Resonant tunneling diode photodetector with nonconstant responsivity

被引:6
作者
Dong, Yu [1 ]
Wang, Guanglong [1 ]
Ni, Haiqiao [2 ]
Chen, Jianhui [1 ]
Gao, Fengqi [1 ]
Li, Baochen [1 ]
Pei, Kangming [2 ]
Niu, Zhichuan [2 ]
机构
[1] Mech Engn Coll, Lab Nanotechnol & Microsyst, Shijiazhuang 050000, Peoples R China
[2] Chinese Acad Sci, Inst Semicond, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Resonant tunneling diode; Light detection; Responsivity; SINGLE-PHOTON DETECTION; HIGH-SPEED;
D O I
10.1016/j.optcom.2015.06.064
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Resonant tunneling diode with an In0.53Ga0.47As absorption layer is designed for light detection at 1550 nm. The responsivity of the detector is simulated by solving the Tsu-Esaki equation. The simulation results show that the responsivity of the detector is nonconstant. It decreases with the increment of the power density of the incident light. Samples of the detector are fabricated by molecular beam epitaxy. The experimental results show that the responsivity increases while the power density of the incident light decreases which agree with the simulation results. The responsivity reaches 4.8 x 10(8) A/(W/mu m(2)) at room temperature and 5.0 x 10(9) A/(W/mu m(2)) at 77 K when the power density of the incident light is lx 10(-13) W/mu m(2). 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:274 / 278
页数:5
相关论文
共 18 条
  • [1] Efficient single photon detection by quantum dot resonant tunneling diodes
    Blakesley, JC
    See, P
    Shields, AJ
    Kardynal, BE
    Atkinson, P
    Farrer, I
    Ritchie, DA
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (06) : 1 - 4
  • [2] Quantum key distribution at 1550 nm with twin superconducting single-photon detectors
    Hadfield, Robert H.
    Habif, Jonathan L.
    Schlafer, John
    Schwall, Robert E.
    Nam, Sae Woo
    [J]. APPLIED PHYSICS LETTERS, 2006, 89 (24)
  • [3] Single-photon detectors for optical quantum information applications
    Hadfield, Robert H.
    [J]. NATURE PHOTONICS, 2009, 3 (12) : 696 - 705
  • [4] GaAs/AlGaAs resonant tunneling diodes with a GaInNAs absorption layer for telecommunication light sensing
    Hartmann, F.
    Langer, F.
    Bisping, D.
    Musterer, A.
    Hoefling, S.
    Kamp, M.
    Forchel, A.
    Worschech, L.
    [J]. APPLIED PHYSICS LETTERS, 2012, 100 (17)
  • [5] A correction method for range walk error in photon counting 3D imaging LIDAR
    He, Weiji
    Sima, Boyu
    Chen, Yunfei
    Dai, Huidong
    Chen, Qian
    Gu, Guohua
    [J]. OPTICS COMMUNICATIONS, 2013, 308 : 211 - 217
  • [6] NUMERICAL-SIMULATION OF INTRINSIC BISTABILITY AND HIGH-FREQUENCY CURRENT OSCILLATIONS IN RESONANT TUNNELING STRUCTURES
    JENSEN, KL
    BUOT, FA
    [J]. PHYSICAL REVIEW LETTERS, 1991, 66 (08) : 1078 - 1081
  • [7] Dark count probability and quantum efficiency of avalanche photodiodes for single-photon detection
    Kang, Y
    Lu, HX
    Lo, YH
    Bethune, DS
    Risk, WP
    [J]. APPLIED PHYSICS LETTERS, 2003, 83 (14) : 2955 - 2957
  • [8] White noise of Nb-based microwave superconducting quantum interference device multiplexers with NbN coplanar resonators for readout of transition edge sensors
    Kohjiro, Satoshi
    Hirayama, Fuminori
    Yamamori, Hirotake
    Nagasawa, Shuichi
    Fukuda, Daiji
    Hidaka, Mutsuo
    [J]. JOURNAL OF APPLIED PHYSICS, 2014, 115 (22)
  • [9] Quantum dot resonant tunneling diode for telecommunication wavelength single photon detection
    Li, H. W.
    Kardynal, B. E.
    See, P.
    Shields, A. J.
    Simmonds, P.
    Beere, H. E.
    Ritchie, D. A.
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (07)
  • [10] High-speed and low-power operation of a resonant tunneling logic gate MOBILE
    Maezawa, K
    Matsuzaki, H
    Yamamoto, M
    Otsuji, T
    [J]. IEEE ELECTRON DEVICE LETTERS, 1998, 19 (03) : 80 - 82