Bayesian multiple imputation for large-scale categorical data with structural zeros

被引:0
|
作者
Manrique-Vallier, Daniel [1 ]
Reiter, Jerome P. [2 ]
机构
[1] Indiana Univ, Dept Stat, Bloomington, IN 47408 USA
[2] Duke Univ, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
Latent class; Log-linear; Missing; Mixture; Multinomial; Nonresponse; PRIORS;
D O I
暂无
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
We propose an approach for multiple imputation of items missing at random in large-scale surveys with exclusively categorical variables that have structural zeros. Our approach is to use mixtures of multinomial distributions as imputation engines, accounting for structural zeros by conceiving of the observed data as a truncated sample from a hypothetical population without structural zeros. This approach has several appealing features: imputations are generated from coherent, Bayesian joint models that automatically capture complex dependencies and readily scale to large numbers of variables. We outline a Gibbs sampling algorithm for implementing the approach, and we illustrate its potential with a repeated sampling study using public use census microdata from the state of New York, U.S.A.
引用
收藏
页码:125 / 134
页数:10
相关论文
共 13 条