Negative regulation of Rho signaling by insulin and its impact on actin cytoskeleton organization in vascular smooth muscle cells - Role of nitric oxide and cyclic guanosine monophosphate signaling pathways

被引:54
作者
Begum, N
Sandu, OA
Duddy, N
机构
[1] Winthrop Univ Hosp, Diabet Res Lab, Mineola, NY 11501 USA
[2] SUNY Stony Brook, Sch Med, Stony Brook, NY 11794 USA
关键词
D O I
10.2337/diabetes.51.7.2256
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Recent studies from our laboratory have shown that insulin induces relaxation of vascular smooth muscle cells (VSMCs) via stimulation of myosin phosphatase and inhibition of Rho kinase activity. In this study, we examined the mechanism whereby insulin inhibits Rho signaling and its impact on actin cytoskeleton organization. Incubation of confluent serum-starved VSMCs with thrombin or phenylephrine (PE) caused a rapid increase in glutathione S-transferase-Rhotekin-Rho binding domain-associated RhoA, Rho kinase activation, and actin cytoskeleton organization, which was blocked by preincubation with insulin. Preexposure to N-G-monomethyl L-arginine acetate (L-NMMA), a nitric oxide synthase inhibitor, and Rp-8 CPT-cyclic guanosine monophosphate (RpcGMP), a cyclic guanosine monophosphate (cGMP) antagonist, attenuated the inhibitory effect of insulin on RhoA activation and restored thrombin-induced Rho kinase activation, and site-specific phosphorylation of the myosin-bound regulatory subunit (MBSThr695) of myosin-bound phosphatase (MBP), and caused actin fiber reorganization. In contrast, 8-bromo-cGMP, a cGMP agonist, mimicked the inhibitory effects of insulin and abolished thrombin-mediated Rho activation. Insulin inactivation of RhoA was accompanied by inhibition of isoprenylation via reductions in geranylgeranyl transferase-1 activity as well as increased RhoA phosphorylation, which was reversed by pretreatment with RpcGMP and L-NMMA. We conclude that insulin may inhibit Rho signaling by affecting post-translational. modification of RhoA via nitric oxide/cGMP signaling pathway to cause MIBP activation, actin cytoskeletal disorganization, and vasodilation.
引用
收藏
页码:2256 / 2263
页数:8
相关论文
共 33 条
[1]   Vascular smooth muscle cell growth and insulin regulation of mitogen-activated protein kinase in hypertension [J].
Begum, N ;
Song, Y ;
Rienzie, J ;
Ragolia, L .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1998, 275 (01) :C42-C49
[2]   Regulation of mitogen-activated protein kinase phosphatase-1 induction by insulin in vascular smooth muscle cells - Evaluation of the role of the nitric oxide signaling pathway and potential defects in hypertension [J].
Begum, N ;
Ragolia, L ;
Rienzie, J ;
McCarthy, M ;
Duddy, N .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (39) :25164-25170
[3]   High glucose and insulin inhibit VSMC MKP-1 expression by blocking iNOS via p38 MAPK activation [J].
Begum, N ;
Ragolia, L .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2000, 278 (01) :C81-C91
[4]   Regulation of myosin-bound protein phosphatase by insulin in vascular smooth muscle cells: Evaluation of the role of Rho kinase and phosphatidylinositol-3-kinase-dependent signaling pathways [J].
Begum, N ;
Duddy, N ;
Sandu, O ;
Reinzie, J ;
Ragolia, L .
MOLECULAR ENDOCRINOLOGY, 2000, 14 (09) :1365-1376
[5]   cAMP-induced morphological changes are counteracted by the activated RhoA small GTPase and the Rho kinase ROKα [J].
Dong, JM ;
Leung, T ;
Manser, E ;
Lim, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (35) :22554-22562
[6]   Inhibitory phosphorylation site for Rho-associated kinase on smooth muscle myosin phosphatase [J].
Feng, JH ;
Ito, M ;
Ichikawa, K ;
Isaka, N ;
Nishikawa, M ;
Hartshorne, DJ ;
Nakano, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (52) :37385-37390
[7]   Inhibition of protein geranylgeranylation causes a superinduction of nitric-oxide synthase-2 by interleukin-1 beta in vascular smooth muscle cells [J].
Finder, JD ;
Litz, JL ;
Blaskovich, MA ;
McGuire, TF ;
Qian, YM ;
Hamilton, AD ;
Davies, P ;
Sebti, SM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (21) :13484-13488
[8]   Differential translocation of Rho family GTPases by lysophosphatidic acid, endothelin-1, and platelet-derived growth factor [J].
Fleming, IN ;
Elliott, CM ;
Exton, JH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (51) :33067-33073
[9]   Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells [J].
Fukata, Y ;
Amano, M ;
Kaibuchi, K .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2001, 22 (01) :32-39
[10]   Hyperinsulinemia enhances transcriptional activity of nuclear factor-κB induced by angiotensin II, hyperglycemia, and advanced glycosylation end products in vascular smooth muscle cells [J].
Golovchenko, I ;
Goalstone, ML ;
Watson, P ;
Brownlee, M ;
Draznin, B .
CIRCULATION RESEARCH, 2000, 87 (09) :746-752