COHEN-MACAULAYNESS AND LIMIT BEHAVIOR OF DEPTH FOR POWERS OF COVER IDEALS

被引:9
作者
Constantinescu, A. [1 ]
Pournaki, M. R. [2 ,3 ]
Fakhari, S. A. Seyed [3 ]
Terai, N. [4 ]
Yassemi, S. [3 ,5 ]
机构
[1] Univ Genoa, Dept Math, Genoa, Italy
[2] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
[3] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
[4] Saga Univ, Fac Culture & Educ, Dept Math, Saga 840, Japan
[5] Univ Tehran, Sch Math Stat & Comp Sci, Coll Sci, Tehran, Iran
关键词
Bracket power; Cohen Macaulay module; Cover ideal; Depth of a module; Symbolic power; MONOMIAL IDEALS; COMPLETE INTERSECTIONS; SYMBOLIC POWERS; VERTEX COVERS; REES-ALGEBRAS;
D O I
10.1080/00927872.2014.897550
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a field, and let R = K[x(1), ..., x(n)] be the polynomial ring over K in n indeterminates x(1), ... , x(n). Let G be a graph with vertex-set {x(1), ..., x(n)}, and let J be the cover ideal of G in R. For a given positive integer k, we denote the kth symbolic power and the kth bracket power of J by J((k)) and J([k]), respectively. In this paper, we give necessary and sufficient conditions for R/J(k), R/J((k)), and R/J([k]) to be Cohen-Macaulay. We also study the limit behavior of the depths of these rings.
引用
收藏
页码:143 / 157
页数:15
相关论文
共 35 条
[1]   COMPLETE INTERSECTIONS IN LOCAL RINGS [J].
ACHILLES, R ;
VOGEL, W .
MATHEMATISCHE NACHRICHTEN, 1979, 89 :285-298
[2]   Cohen-Macaulay intersections [J].
Ahmad, Safyan .
ARCHIV DER MATHEMATIK, 2009, 92 (03) :228-236
[3]  
[Anonymous], 2005, Combinatorial Commutative Algebra, volume 227 of Graduate Texts in Mathematics
[4]  
Bondy J.A., 2008, GTM
[6]  
Bruns W., 1998, Cambridge Studies in Advanced Mathematics, V2nd
[7]   CODIMENSION AND ANALYTIC SPREAD [J].
BURCH, L .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 72 (NOV) :369-&
[8]   Koszulness, Krull dimension, and other properties of graph-related algebras [J].
Constantinescu, Alexandru ;
Varbaro, Matteo .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2011, 34 (03) :375-400
[9]  
Cowsik R.C., 1976, J INDIAN MATH SOC, V40, P217
[10]   EFFECTIVE COWSIK-NORI THEOREM FOR EDGE IDEALS [J].
Crupi, Marilena ;
Rinaldo, Giancarlo ;
Terai, Naoki ;
Yoshida, Ken-ichi .
COMMUNICATIONS IN ALGEBRA, 2010, 38 (09) :3347-3357