Microfluidic radiobioassays: a radiometric detection tool for understanding cellular physiology and pharmacokinetics

被引:18
作者
Liu, Zhen [1 ,2 ]
Lan, Xiaoli [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Union Hosp, Union Hosp, Tongji Med Coll,Dept Nucl Med, 1277 Jiefang Ave, Wuhan 430022, Hubei, Peoples R China
[2] Hubei Key Lab Mol Imaging, Wuhan 430022, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
MINIATURIZED QUALITY-CONTROL; SMALL-ANIMAL PET; RADIOLUMINESCENCE MICROSCOPY; PERFORMANCE EVALUATION; GLUCOSE-METABOLISM; IMAGING-SYSTEM; BETA PARTICLES; RESOLUTION; CHIP; TOMOGRAPHY;
D O I
10.1039/c9lc00159j
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The investigation of molecular uptake and its kinetics in cells is valuable for understanding the cellular physiological status, the observation of drug interventions, and the development of imaging agents and pharmaceuticals. Microfluidic radiobioassays, or microfluidic radiometric bioassays, constitute a radiometric imaging-on-a-chip technology for the assay of biological samples using radiotracers. From 2006 to date, microfluidic radiobioassays have shown advantages in many applications, including radiotracer characterization, enzyme activity radiobioassays, fast drug evaluation, single-cell imaging, facilitation of dynamic positron emission tomography (PET) imaging, and cellular pharmacokinetics (PK)/pharmacodynamics (PD) studies. These advantages lie in the minimized and integrated detection scheme, allowing real-time tracking of dynamic uptake, high sensitivity radiotracer imaging, and quantitative interpretation of imaging results. In this review, the basics of radiotracers, various radiometric detection methods, and applications of microfluidic radiobioassays will be introduced and summarized, and the potential applications and future directions of microfluidic radiobioassays will be forecasted.
引用
收藏
页码:2315 / 2339
页数:25
相关论文
共 111 条
[71]   18F-FDG positron autoradiography with a particle counting silicon pixel detector [J].
Russo, P. ;
Lauria, A. ;
Mettivier, G. ;
Montesi, M. C. ;
Marotta, M. ;
Aloj, L. ;
Lastoria, S. .
PHYSICS IN MEDICINE AND BIOLOGY, 2008, 53 (21) :6227-6243
[72]   Single-Cell Characterization of 18F-FLT Uptake with Radioluminescence Microscopy [J].
Sengupta, Debanti ;
Pratx, Guillem .
JOURNAL OF NUCLEAR MEDICINE, 2016, 57 (07) :1136-1140
[73]   Bright Lu2O3:Eu Thin-Film Scintillators for High-Resolution Radioluminescence Microscopy [J].
Sengupta, Debanti ;
Miller, Stuart ;
Marton, Zsolt ;
Chin, Frederick ;
Nagarkar, Vivek ;
Pratx, Guillem .
ADVANCED HEALTHCARE MATERIALS, 2015, 4 (14) :2064-2070
[74]   The power of solid supports in multiphase and droplet-based microfluidics: towards clinical applications [J].
Serra, M. ;
Ferraro, D. ;
Pereiro, I. ;
Viovy, J. -L. ;
Descroix, S. .
LAB ON A CHIP, 2017, 17 (23) :3979-3999
[75]  
Sha W., 2009, IEEE NUCL SCI S
[76]   Position-sensitive avalanche photodiodes for gamma-ray imaging [J].
Shah, KS ;
Farrell, R ;
Grazioso, R ;
Harmon, ES ;
Karplus, E .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2002, 49 (04) :1687-1692
[77]   Overriding imatinib resistance with a novel ABL kinase inhibitor [J].
Shah, NP ;
Tran, C ;
Lee, FY ;
Chen, P ;
Norris, D ;
Sawyers, CL .
SCIENCE, 2004, 305 (5682) :399-401
[78]   Quantitative assessments of glycolysis from single cells [J].
Shin, Young Shik ;
Kim, Jungwoo ;
Johnson, Dazy ;
Dooraghi, Alex A. ;
Mai, Wilson X. ;
Ta, Lisa ;
Chatziioannou, Arion F. ;
Phelps, Michael E. ;
Nathanson, David A. ;
Heath, James R. .
TECHNOLOGY, 2015, 3 (04) :172-178
[79]   Measurement of single-cell dynamics [J].
Spiller, David G. ;
Wood, Christopher D. ;
Rand, David A. ;
White, Michael R. H. .
NATURE, 2010, 465 (7299) :736-745
[80]   High-resolution PET detector design: modelling components of intrinsic spatial resolution [J].
Stickel, JR ;
Cherry, SR .
PHYSICS IN MEDICINE AND BIOLOGY, 2005, 50 (02) :179-195