Existence and Multiplicity of Solutions for Second-Order Impulsive Differential Inclusions

被引:5
作者
Nyamoradi, N. [1 ]
机构
[1] Razi Univ, Kermanshah, Iran
来源
JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES | 2014年 / 49卷 / 01期
关键词
Non-smooth critical point; variational methods; locally Lipschitz; impulsive; anti-periodic solution; BOUNDARY-VALUE-PROBLEMS; EQUATIONS; MODEL;
D O I
10.3103/S106836231401004X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider a class of a second-order impulsive differential inclusions. Using a variational method based on the non-smooth critical point theory, we prove the existence and multiplicity of anti-periodic solutions.
引用
收藏
页码:33 / 41
页数:9
相关论文
共 17 条
[1]  
Agarwal R. P., 1989, SINGULAR BOUNDARY VA
[2]  
[Anonymous], 1995, World Sci. Ser. Nonlinear Sci., Ser. A., DOI DOI 10.1142/2892
[3]  
[Anonymous], 2006, CONT MATH ITS APPL
[4]   VARIATIONAL-METHODS FOR NON-DIFFERENTIABLE FUNCTIONALS AND THEIR APPLICATIONS TO PARTIAL-DIFFERENTIAL EQUATIONS [J].
CHANG, KC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 80 (01) :102-129
[5]  
Clarke F.H, 1983, OPTIMIZATION NONSMOO
[6]  
Gasinski L., 2005, NONSMOOTH CRITICAL P
[7]  
Lakshmikanthams V, 2005, AEQUATIONES MATH, V69, P83
[8]   Impulsive periodic boundary value problems of first-order differential equations [J].
Li, Jianli ;
Nieto, Juan J. ;
Shen, Jianhua .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) :226-236
[9]   Dynamic analysis of Michaelis-Menten chemostat-type competition models with time delay and pulse in a polluted environment [J].
Meng, Xinzhu ;
Li, Zhenqing ;
Nieto, Juan J. .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2010, 47 (01) :123-144
[10]  
Motreanu D., 1999, Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities