Terahertz plasmon and surface-plasmon modes in cylindrical metallic nanowires

被引:1
作者
Wu Ping [1 ]
Xu Wen [1 ,2 ]
Li Long-Long [1 ]
Lu Tie-Cheng [3 ]
Wu Wei-Dong [4 ]
机构
[1] Chinese Acad Sci, Inst Solid State Phys, Key Lab Mat Phys, Hefei 230031, Peoples R China
[2] Yunnan Univ, Dept Phys, Kunming 650091, Peoples R China
[3] Sichuan Univ, Dept Phys, Chengdu 610064, Peoples R China
[4] China Acad Engn Phys, Inst Appl Elect, Mianyang 621900, Peoples R China
关键词
metallic nanowires; collective excitations; terahertz; ELECTRON-GAS; WIRES;
D O I
10.1088/1674-1056/23/10/107807
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a theoretical study on collective excitation modes associated with plasmon and surface-plasmon oscillations in cylindrical metallic nanowires. Based on a two-subband model, the dynamical dielectric function matrix is derived under the random-phase approximation. An optic-like branch and an acoustic-like branch, which are free of Landau damping, are observed for both plasmon and surface-plasmon modes. Interestingly, for surface-plasmon modes, we find that two branches of the dispersion relation curves converge at a wavevector q(z) = q(max) beyond which no surface-plasmon mode exists. Moreover, we examine the dependence of these excitation modes on sample parameters such as the radius of the nanowires. It is found that in metallic nanowires realized by state-of-the-art nanotechnology the intra-and inter-subband plasmon and surface-plasmon frequencies are in the terahertz bandwidth. The frequency of the optic-like modes decreases with increasing radius of the nanowires, whereas that of the acoustic-like modes is not sensitive to the variation of the radius. This study is pertinent to the application of metallic nanowires as frequency-tunable terahertz plasmonic devices.
引用
收藏
页数:5
相关论文
共 16 条
  • [1] ONE-DIMENSIONAL PLASMONS IN ALGAAS/GAAS QUANTUM WIRES
    DEMEL, T
    HEITMANN, D
    GRAMBOW, P
    PLOOG, K
    [J]. PHYSICAL REVIEW LETTERS, 1991, 66 (20) : 2657 - 2660
  • [2] Abnormal Temperature Dependence of Coercivity in Cobalt Nanowires
    Fan Xiu-Xiu
    Hu Hai-Ning
    Zhou Shi-Ming
    Yang Mao
    Du Jun
    Shi Zhong
    [J]. CHINESE PHYSICS LETTERS, 2012, 29 (07)
  • [3] INTERSUBBAND PLASMON EXCITATIONS OF AN ELECTRON-GAS IN A CYLINDRICAL QUANTUM-WELL WIRE
    HUANG, FY
    [J]. PHYSICAL REVIEW B, 1990, 41 (18): : 12957 - 12959
  • [4] OPTICAL CONSTANTS OF NOBLE METALS
    JOHNSON, PB
    CHRISTY, RW
    [J]. PHYSICAL REVIEW B, 1972, 6 (12) : 4370 - 4379
  • [5] Non-destructive terahertz imaging of illicit drugs using spectral fingerprints
    Kawase, K
    Ogawa, Y
    Watanabe, Y
    Inoue, H
    [J]. OPTICS EXPRESS, 2003, 11 (20): : 2549 - 2554
  • [6] Noble Metal Nanowires: From Plasmon Waveguides to Passive and Active Devices
    Lal, Surbhi
    Hafner, Jason H.
    Halas, Naomi J.
    Link, Stephan
    Nordlander, Peter
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2012, 45 (11) : 1887 - 1895
  • [7] Solution-processed metal nanowire mesh transparent electrodes
    Lee, Jung-Yong
    Connor, Stephen T.
    Cui, Yi
    Peumans, Peter
    [J]. NANO LETTERS, 2008, 8 (02) : 689 - 692
  • [8] Coherent Modulation of Propagating Plasmons in Silver-Nanowire-Based Structures
    Li, Zhipeng
    Zhang, Shunping
    Halas, Naomi J.
    Nordlander, Peter
    Xu, Hongxing
    [J]. SMALL, 2011, 7 (05) : 593 - 596
  • [9] Electrochemical fabrication of single-crystalline and polycrystalline Au nanowires: the influence of deposition parameters
    Liu, J.
    Duan, J. L.
    Toimil-Molares, M. E.
    Karim, S.
    Cornelius, T. W.
    Dobrev, D.
    Yao, H. J.
    Sun, Y. M.
    Hou, M. D.
    Mo, D.
    Wang, Z. G.
    Neumann, R.
    [J]. NANOTECHNOLOGY, 2006, 17 (08) : 1922 - 1926
  • [10] Plasmonics: Merging photonics and electronics at nanoscale dimensions
    Ozbay, E
    [J]. SCIENCE, 2006, 311 (5758) : 189 - 193