Rietveld Refinement of Sintered Magnesium Substituted Calcium Apatite

被引:7
作者
Sader, M. S. [1 ]
Moreira, E. L. [2 ]
Moraes, V. C. A. [2 ]
Araujo, J. C. [3 ]
LeGeros, R. Z.
Soares, G. A. [1 ]
机构
[1] Univ Fed Rio de Janeiro, PEMM, COPPE, POB 68505, BR-21941972 Rio de Janeiro, Brazil
[2] Ctr Brasileiro Pesquisas Fis, BR-22290000 Rio De Janeiro, Brazil
[3] UERJ, FFP, BR-24435000 Sao Goncalo, Brazil
来源
BIOCERAMICS 21 | 2009年 / 396-398卷
关键词
Ca-deficient apatite; Mg substitution; Rietveld method; NEUTRON POWDER DIFFRACTION; BONE;
D O I
10.4028/www.scientific.net/KEM.396-398.277
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The incorporation of magnesium in the synthetic apatite has been associated with biomineralization process and osteoporosis therapy in human and animals. Magnesium easily replaces calcium in the apatite lattice and influences or controls the hydroxyapatite crystallization processes. In this work, Mg-substituted calcium deficient apatite, with Mg/Ca ratio = 0.1, 0.15 and 0.2 were synthesized by precipitation method. Then, sintered at 1000 degrees C and compared with a commercial product labeled as tricalcium, phosphate sintered at the 1000 degrees C. The sintered products showed tricalcium phosphate (beta-TCP) structure. The Mg2+ substitution in the Ca(4) and Ca(5) sites of beta-TCP and the lattice parameter changes were estimated using the Rietveld method. Using this method, the formulas Ca-2.73(Mg-0.27)(PO4)(2), Ca-2.71(Mg-0.29)(PO4)(2) and Ca-2.70(Mg0.23Mg0.07)(PO4)(2) were calculated for the samples with Mg/Ca ratio = 0.1, 0.15 and 0.2 respectively.
引用
收藏
页码:277 / 280
页数:4
相关论文
共 50 条
  • [41] Rietveld Refinement of New Ternary Compound Al14Dy5Si
    何唯
    张吉亮
    曾令民
    JournalofRareEarths, 2006, (S1) : 78 - 81
  • [42] RIETVELD REFINEMENT OF POWDER X-RAY DIFFRACTION OF NANOCRYSTALLINE NOBLE METALS - TUNGSTEN TRIOXIDE
    Indrea, Emil
    Bica, Ecaterina
    Popovici, Elisabeth-Jeanne
    Suciu, Ramona-Crina
    Rosu, Marcela Corina
    Silipas, Teofil-Danut
    REVUE ROUMAINE DE CHIMIE, 2011, 56 (06) : 589 - +
  • [43] Structural changes in clays subjected to heat treatment: an analysis by structural refinement using the Rietveld method
    Quiroga Agurto, M.
    Zeballos Velasquez, E. L.
    Reyes Navarro, F. A.
    REVISTA MEXICANA DE FISICA, 2021, 67 (06)
  • [44] Rietveld refinement of YbCoO3 prepared from aqueous solution-gel precursor
    Ben Farhat, L.
    Ben Hassen, R.
    Dammak, L.
    POWDER DIFFRACTION, 2007, 22 (01) : 35 - 39
  • [45] Rietveld crystal structure refinement of a natural rhombohedral grossular-andradite garnet from Serbia
    Tancic, Pavle
    Kremenovic, Aleksandar
    GEOLOGICAL QUARTERLY, 2022, 66 (01):
  • [46] Energetics of lanthanide-doped calcium phosphate apatite
    Hosseini, S. Mahboobeh
    Drouet, Christophe
    Al-Kattan, Ahmed
    Navrotsky, Alexandra
    AMERICAN MINERALOGIST, 2014, 99 (11-12) : 2320 - 2327
  • [47] Rietveld refinement of the crystal structure of silver-oxalate from neutron powder diffraction data
    Eriksson, L
    EUROPEAN POWDER DIFFRACTION: EPDIC IV, PTS 1 AND 2, 1996, 228 : 801 - 806
  • [48] Effects of grain refinement on the biocorrosion and in vitro bioactivity of magnesium
    Saha, Partha
    Roy, Mangal
    Datta, Moni Kanchan
    Lee, Boeun
    Kumta, Prashant N.
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2015, 57 : 294 - 303
  • [49] Apatite Formation from Amorphous Calcium Phosphate and Mixed Amorphous Calcium Phosphate/Amorphous Calcium Carbonate
    Ibsen, Casper J. S.
    Chernyshov, Dmitry
    Birkedal, Henrik
    CHEMISTRY-A EUROPEAN JOURNAL, 2016, 22 (35) : 12347 - 12357
  • [50] Osteoclast and osteoblast responsive carbonate apatite coatings for biodegradable magnesium alloys
    Hiromoto, Sachiko
    Itoh, Sayaka
    Noda, Naomi
    Yamazaki, Tomohiko
    Katayama, Hideki
    Akashi, Takaya
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2020, 21 (01) : 346 - 358