Rietveld Refinement of Sintered Magnesium Substituted Calcium Apatite

被引:7
作者
Sader, M. S. [1 ]
Moreira, E. L. [2 ]
Moraes, V. C. A. [2 ]
Araujo, J. C. [3 ]
LeGeros, R. Z.
Soares, G. A. [1 ]
机构
[1] Univ Fed Rio de Janeiro, PEMM, COPPE, POB 68505, BR-21941972 Rio de Janeiro, Brazil
[2] Ctr Brasileiro Pesquisas Fis, BR-22290000 Rio De Janeiro, Brazil
[3] UERJ, FFP, BR-24435000 Sao Goncalo, Brazil
来源
BIOCERAMICS 21 | 2009年 / 396-398卷
关键词
Ca-deficient apatite; Mg substitution; Rietveld method; NEUTRON POWDER DIFFRACTION; BONE;
D O I
10.4028/www.scientific.net/KEM.396-398.277
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The incorporation of magnesium in the synthetic apatite has been associated with biomineralization process and osteoporosis therapy in human and animals. Magnesium easily replaces calcium in the apatite lattice and influences or controls the hydroxyapatite crystallization processes. In this work, Mg-substituted calcium deficient apatite, with Mg/Ca ratio = 0.1, 0.15 and 0.2 were synthesized by precipitation method. Then, sintered at 1000 degrees C and compared with a commercial product labeled as tricalcium, phosphate sintered at the 1000 degrees C. The sintered products showed tricalcium phosphate (beta-TCP) structure. The Mg2+ substitution in the Ca(4) and Ca(5) sites of beta-TCP and the lattice parameter changes were estimated using the Rietveld method. Using this method, the formulas Ca-2.73(Mg-0.27)(PO4)(2), Ca-2.71(Mg-0.29)(PO4)(2) and Ca-2.70(Mg0.23Mg0.07)(PO4)(2) were calculated for the samples with Mg/Ca ratio = 0.1, 0.15 and 0.2 respectively.
引用
收藏
页码:277 / 280
页数:4
相关论文
共 50 条
  • [31] Comparative study on the sintered porous A-type carbonate apatite, B-type carbonate apatite, and hydroxyapatite
    Irawan, Vincent
    Akaike, Kaori
    Mizuno, Hayato Laurence
    Anraku, Yasutaka
    Sotome, Shinichi
    Okawa, Atsushi
    Yoshii, Toshitaka
    Ikoma, Toshiyuki
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2025,
  • [32] Ultrastructural characterization of tissue response to sintered carbonate apatite in rabbit bone
    Kogaya, Yasutoku
    Hasegawa, Masahiro
    Uchida, Atsumasa
    Doi, Yutaka
    DENTAL MATERIALS JOURNAL, 2006, 25 (03) : 487 - 492
  • [33] Rietveld refinement of ternary compound Gd117Fe52Ge112
    He, Wei
    Zhang, Jiliang
    Zeng, Lingmin
    POWDER DIFFRACTION, 2007, 22 (04) : 312 - 315
  • [34] Electrical conductivity and microstructure by Rietveld refinement of doped Cu-Ni powder alloys
    Fambrini, A. S.
    Monteiro, W. A.
    Orrego, R. M. M.
    Marques, I. M.
    Carrio, Juan A. G.
    ADVANCED POWDER TECHNOLOGY VII, 2010, 660-661 : 63 - 68
  • [35] RIETVELD REFINEMENT STRATEGY FOR QUANTITATIVE PHASE ANALYSIS OF PARTIALLY AMORPHOUS ZEOLITIZED TUFFACEOUS ROCKS
    Snellings, Ruben
    Machiels, Lieven
    Mertens, Gilles
    Elsen, Jan
    GEOLOGICA BELGICA, 2010, 13 (03): : 183 - 195
  • [36] Refinement of the isomorphic substitutions in goethite and hematite by the Rietveld method, and relevance to bauxite characterisation and processing
    Neumann, Reiner
    Avelar, Angela Nair
    da Costa, Geraldo Magela
    MINERALS ENGINEERING, 2014, 55 : 80 - 86
  • [37] Characterization of tourmaline crystals by Rietveld and single-crystal structure refinement: A comparative study
    Choi J.B.
    Hawthorne F.C.
    Geosciences Journal, 2002, 6 (3) : 237 - 243
  • [38] Neutron powder diffraction study of methane hydrate by the Rietveld refinement and maximum entropy method
    Hoshikawa, Akinori
    Igawa, Naoki
    Yamauchi, Hiroki
    Ishii, Yoshinobu
    PHYSICA B-CONDENSED MATTER, 2006, 385 : 567 - 570
  • [39] Rietveld refinement of new ternary compound Al14Dy5Si
    He Wei
    Zhang Jiliang
    Zeng Lingmin
    JOURNAL OF RARE EARTHS, 2006, 24 : 78 - 81
  • [40] Calcium, Magnesium, and Phosphate
    Bazydlo, Lindsay A. L.
    Needham, Marisa
    Harris, Neil S.
    LABMEDICINE, 2014, 45 (01): : E44 - E50