Rietveld Refinement of Sintered Magnesium Substituted Calcium Apatite

被引:7
作者
Sader, M. S. [1 ]
Moreira, E. L. [2 ]
Moraes, V. C. A. [2 ]
Araujo, J. C. [3 ]
LeGeros, R. Z.
Soares, G. A. [1 ]
机构
[1] Univ Fed Rio de Janeiro, PEMM, COPPE, POB 68505, BR-21941972 Rio de Janeiro, Brazil
[2] Ctr Brasileiro Pesquisas Fis, BR-22290000 Rio De Janeiro, Brazil
[3] UERJ, FFP, BR-24435000 Sao Goncalo, Brazil
来源
BIOCERAMICS 21 | 2009年 / 396-398卷
关键词
Ca-deficient apatite; Mg substitution; Rietveld method; NEUTRON POWDER DIFFRACTION; BONE;
D O I
10.4028/www.scientific.net/KEM.396-398.277
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The incorporation of magnesium in the synthetic apatite has been associated with biomineralization process and osteoporosis therapy in human and animals. Magnesium easily replaces calcium in the apatite lattice and influences or controls the hydroxyapatite crystallization processes. In this work, Mg-substituted calcium deficient apatite, with Mg/Ca ratio = 0.1, 0.15 and 0.2 were synthesized by precipitation method. Then, sintered at 1000 degrees C and compared with a commercial product labeled as tricalcium, phosphate sintered at the 1000 degrees C. The sintered products showed tricalcium phosphate (beta-TCP) structure. The Mg2+ substitution in the Ca(4) and Ca(5) sites of beta-TCP and the lattice parameter changes were estimated using the Rietveld method. Using this method, the formulas Ca-2.73(Mg-0.27)(PO4)(2), Ca-2.71(Mg-0.29)(PO4)(2) and Ca-2.70(Mg0.23Mg0.07)(PO4)(2) were calculated for the samples with Mg/Ca ratio = 0.1, 0.15 and 0.2 respectively.
引用
收藏
页码:277 / 280
页数:4
相关论文
共 50 条
  • [1] Rietveld structure refinement of synthetic magnesium substituted beta-tricalcium phosphate
    Bigi, A
    Falini, G
    Foresti, E
    Ripamonti, A
    Gazzano, M
    Roveri, N
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1996, 211 (01): : 13 - 16
  • [2] Maximum substitution of magnesium for calcium sites in Mg-β-TCP structure determined by X-ray powder diffraction with the Rietveld refinement
    Araujo, J. C.
    Sader, M. S.
    Moreira, E. L.
    Moraes, V. C. A.
    LeGeros, R. Z.
    Soares, G. A.
    MATERIALS CHEMISTRY AND PHYSICS, 2009, 118 (2-3) : 337 - 340
  • [3] Influence of magnesium doping on the phase transformation temperature of β-TCP ceramics examined by Rietveld refinement
    Enderle, R
    Götz-Neunhoeffer, F
    Göbbels, M
    Müller, FA
    Greil, P
    BIOMATERIALS, 2005, 26 (17) : 3379 - 3384
  • [4] Rietveld structure refinement of microcline
    Liu, Shanke
    EUROPEAN JOURNAL OF MINERALOGY, 2015, 27 (04) : 501 - 510
  • [5] Rietveld refinement study of pyrite crystals
    Paszkowicz, W
    Leiro, JA
    JOURNAL OF ALLOYS AND COMPOUNDS, 2005, 401 (1-2) : 289 - 295
  • [6] Characterization of calcium phosphate apatite with variable Ca/P ratios sintered at low temperature
    Wang, Moo-Chin
    Shih, Wei-Jen
    Hung, I-Ming
    Chen, Hui-Ting
    Hon, Min-Hsiung
    Huang, Hong-Hsin
    CERAMICS INTERNATIONAL, 2015, 41 (01) : 1223 - 1233
  • [7] Integration of intensity and angle calibration into Rietveld refinement
    Schneider, J
    Kern, A
    EUROPEAN POWDER DIFFRACTION: EPDIC IV, PTS 1 AND 2, 1996, 228 : 35 - 38
  • [8] Combined X-ray and neutron diffraction Rietveld refinement in iron-substituted nano-hydroxyapatite
    A. Kyriacou
    Th. Leventouri
    B. C. Chakoumakos
    V. O. Garlea
    C. B. dela Cruz
    A. J. Rondinone
    K. D. Sorge
    Journal of Materials Science, 2013, 48 : 3535 - 3545
  • [9] RIETVELD REFINEMENT OF THE KAOLINITE STRUCTURE AT 1.5-K
    BISH, DL
    CLAYS AND CLAY MINERALS, 1993, 41 (06) : 738 - 744
  • [10] Refinement of the crystal structure of fornacite using the rietveld method
    D. A. Ksenofontov
    Yu. K. Kabalov
    I. V. Pekov
    N. V. Zubkova
    I. A. Ekimenkova
    D. Yu. Pushcharovskii
    Doklady Earth Sciences, 2014, 456 : 520 - 523