Bifurcations and dynamics of a discrete predator-prey system

被引:24
作者
Asheghi, Rasoul [1 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, Esfahan 84156, Iran
关键词
predator-prey system; Neimark-Sacker and period-doubling bifurcation; dynamics; host-parasite model; plant-herbivore model; PERIODIC-SOLUTIONS;
D O I
10.1080/17513758.2014.927596
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
In this paper, we study the dynamics behaviour of a stratum of plant-herbivore which is modelled through the following F(x, y) = (f (x, y), g(x, y)) two-dimensional map with four parameters defined by f(x, y) = x exp (r (1 - x/k) - by), g(x, y) = x(1 - exp( -ay)), where x >= 0, y >= 0, and the real parameters a, b, r, k are all positive. We will focus on the case a not equal b. We study the stability of fixed points and do the analysis of the period-doubling and the Neimark-Sacker bifurcations in a standard way.
引用
收藏
页码:161 / 186
页数:26
相关论文
共 21 条
[1]   Chaotic dynamics of a discrete prey-predator model with Holling type II [J].
Agiza, H. N. ;
ELabbasy, E. M. ;
EL-Metwally, H. ;
Elsadany, A. A. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (01) :116-129
[2]   DYNAMIC COMPLEXITY IN PREDATOR-PREY MODELS FRAMED IN DIFFERENCE EQUATIONS [J].
BEDDINGTON, JR ;
FREE, CA ;
LAWTON, JH .
NATURE, 1975, 255 (5503) :58-60
[3]  
Edelstein-Keshet L., 2005, MATH MODELS BIOL
[4]   Periodic solutions of a discrete time nonautonomous ratio-dependent predator-prey system [J].
Fan, M ;
Wang, K .
MATHEMATICAL AND COMPUTER MODELLING, 2002, 35 (9-10) :951-961
[5]  
Fan M., 2002, APPL ANAL, V81, P801, DOI [10.1080/0003681021000004438, DOI 10.1080/0003681021000004438]
[6]  
Hone A. N. W., 2010, Journal of Biological Dynamics, V4, P594, DOI 10.1080/17513750903528192
[7]   Existence and global stability of periodic solutions of a discrete predator-prey system with delays [J].
Huo, HF ;
Li, WT .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 153 (02) :337-351
[8]   Impulsive state feedback control of a predator-prey model [J].
Jiang, Guirong ;
Lu, Qishao .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 200 (01) :193-207
[9]   Complex dynamics of a Holling type II prey-predator system with state feedback control [J].
Jiang, Guirong ;
Lu, Qishao ;
Qian, Linning .
CHAOS SOLITONS & FRACTALS, 2007, 31 (02) :448-461
[10]  
Jing Z., 2000, CHAOS SOLITON FRACT, V27, P259