Mussel-inspired self-coating at macro-interface with improved biocompatibility and bioactivity via dopamine grafted heparin-like polymers and heparin

被引:172
作者
Ma, Lang [1 ]
Qin, Hui [1 ]
Cheng, Chong [1 ,2 ]
Xia, Yi [1 ]
He, Chao [1 ]
Nie, Chuanxiong [1 ]
Wang, Lingren [1 ]
Zhao, Changsheng [1 ,2 ]
机构
[1] Sichuan Univ, Coll Polymer Sci & Engn, State Key Lab Polymer Mat Engn, Chengdu 610065, Peoples R China
[2] Sichuan Univ, Natl Engn Res Ctr Biomat, Chengdu 610064, Peoples R China
基金
中国国家自然科学基金;
关键词
BLOOD-COMPATIBILITY; POLYETHERSULFONE MEMBRANE; PROTEIN ADSORPTION; ULTRAFILTRATION MEMBRANES; BIOMEDICAL APPLICATIONS; PHOSPHOLIPID POLYMER; SURFACE; LAYER; POLYSULFONE; CHITOSAN;
D O I
10.1039/c3tb21388a
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
In this study, multifunctional mussel-inspired self-coated membranes with remarkable blood and cell compatibilities are prepared by a facile and green approach. A highly sulfonated linear heparin-like polymer (HepLP, poly(sodium 4-vinylbenzenesulfonate)-co-poly(sodium methacrylate)) and heparin are chosen for the mussel-inspired heparin-mimicking coating, respectively. Firstly, DA is grafted onto the backbone of HepLP or heparin to obtain DA grafted HepLP (DA-g-HepLP) or DA grafted heparin (DA-g-Hep) by means of the carbodiimide chemistry method. Then, the DA-g-HepLP and DA-g-Hep are used to prepare surface coated heparin-mimicking substrates; the polyethersulfone (PES) dialysis membrane is chosen as the model substrate. The coated surface composition, surface morphology, water contact angle, surface zeta-potential, blood compatibility and cell compatibility are systematically investigated. The results of surface spectra, scanning electron microscopy (SEM) and atomic force microscopy (AFM) indicated that the DA-g-HepLP and DA-g-Hep were successfully coated onto the membranes. The coated membranes showed increased hydrophilicity and electronegativity, decreased plasma protein adsorption, and suppressed platelet adhesion compared to the pristine membrane. The cell morphology observation and cytotoxicity assays demonstrated that the surface coated heparin-mimicking membranes showed superior performance in endothelial cell proliferation and morphology differentiation. In addition, the excellent anticoagulant bioactivities indicated that the adhered DA-g-HepLP (or DA-g-Hep) could function or maintain its biological activity after the immobilization. In general, the mussel-inspired protocol of surface self-coating conferred the modified membranes with integrated blood compatibility, cell proliferation and biological activity for multi-biomedical applications, like hemodialysis, blood purification, organ implantation, and cell and tissue cultures.
引用
收藏
页码:363 / 375
页数:13
相关论文
共 69 条
[1]   Preparation of poly(vinylidene fluoride) microfiltration membrane with uniform surface-copolymerized poly(ethylene glycol) methacrylate and improvement of blood compatibility [J].
Chang, Yung ;
Shih, Yu-Ju ;
Ruaan, Ruoh-Chyu ;
Higuchi, Akon ;
Chen, Wen-Yih ;
Lai, Juin-Yih .
JOURNAL OF MEMBRANE SCIENCE, 2008, 309 (1-2) :165-174
[2]   Zwitterionic Sulfobetaine-Grafted Poly(vinylidene fluoride) Membrane with Highly Effective Blood Compatibility via Atmospheric Plasma-Induced Surface Copolymerization [J].
Chang, Yung ;
Chang, Wan-Ju ;
Shih, Yu-Ju ;
Wei, Ta-Chin ;
Hsiue, Ging-Ho .
ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (04) :1228-1237
[3]   Biocompatible polymer materials: Role of protein-surface interactions [J].
Chen, Hong ;
Yuan, Lin ;
Song, Wei ;
Wu, Zhongkui ;
Li, Dan .
PROGRESS IN POLYMER SCIENCE, 2008, 33 (11) :1059-1087
[4]   Improving blood-compatibility of titanium by coating collagen-heparin multilayers [J].
Chen, J. L. ;
Li, Q. L. ;
Chen, J. Y. ;
Chen, C. ;
Huang, N. .
APPLIED SURFACE SCIENCE, 2009, 255 (15) :6894-6900
[5]   Biomimetic assembly of polydopamine-layer on graphene: Mechanisms, versatile 2D and 3D architectures and pollutant disposal [J].
Cheng, Chong ;
Li, Shuang ;
Zhao, Jing ;
Li, Xiaoxiao ;
Liu, Zhengyang ;
Ma, Lang ;
Zhang, Xiang ;
Sun, Shudong ;
Zhao, Changsheng .
CHEMICAL ENGINEERING JOURNAL, 2013, 228 :468-481
[6]   Biopolymer functionalized reduced graphene oxide with enhanced biocompatibility via mussel inspired coatings/anchors [J].
Cheng, Chong ;
Nie, Shengqiang ;
Li, Shuang ;
Peng, Hong ;
Yang, Hang ;
Ma, Lang ;
Sun, Shudong ;
Zhao, Changsheng .
JOURNAL OF MATERIALS CHEMISTRY B, 2013, 1 (03) :265-275
[7]   General and Biomimetic Approach to Biopolymer-Functionalized Graphene Oxide Nanosheet through Adhesive Dopamine [J].
Cheng, Chong ;
Li, Shuang ;
Nie, Shengqiang ;
Zhao, Weifeng ;
Yang, Hang ;
Sun, Shudong ;
Zhao, Changsheng .
BIOMACROMOLECULES, 2012, 13 (12) :4236-4246
[8]   The hydrodynamic permeability and surface property of polyethersulfone ultrafiltration membranes with mussel-inspired polydopamine coatings [J].
Cheng, Chong ;
Li, Shuang ;
Zhao, Weifeng ;
Wei, Qiang ;
Nie, Shengqiang ;
Sun, Shudong ;
Zhao, Changsheng .
JOURNAL OF MEMBRANE SCIENCE, 2012, 417 :228-236
[9]   Remarkable pH-sensitivity and anti-fouling property of terpolymer blended polyethersulfone hollow fiber membranes [J].
Cheng, Chong ;
Ma, Lang ;
Wu, Danfeng ;
Ren, Jian ;
Zhao, Weifeng ;
Xue, Jimin ;
Sun, Shudong ;
Zhao, Changsheng .
JOURNAL OF MEMBRANE SCIENCE, 2011, 378 (1-2) :369-381
[10]   The interplay between nanostructured carbon-grafted chitosan scaffolds and protein adsorption on the cellular response of osteoblasts: Structure-function property relationship [J].
Depan, D. ;
Misra, R. D. K. .
ACTA BIOMATERIALIA, 2013, 9 (04) :6084-6094