Thermal rectification in asymmetric graphene ribbons

被引:329
作者
Yang, Nuo [1 ,2 ]
Zhang, Gang [3 ]
Li, Baowen [1 ,2 ,4 ]
机构
[1] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[2] Natl Univ Singapore, Ctr Computat Sci & Engn, Singapore 117542, Singapore
[3] ASTAR, Inst Microelect, Singapore 117685, Singapore
[4] NUS Grad Sch Integrat Sci & Engn, Singapore 117456, Singapore
关键词
graphene; Monte Carlo methods; nanostructured materials; rectification; thermal conductivity; CONDUCTIVITY; DYNAMICS; STATE;
D O I
10.1063/1.3183587
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, heat flux in graphene nanoribbons has been studied by using molecular dynamics simulations. It is found that the heat flux runs preferentially along the direction of decreasing width, which demonstrates significant thermal rectification effect in the asymmetric graphene ribbons. The dependence of rectification ratio on the vertex angle and the length are also discussed. Compared to the carbon nanotube based one-dimensional thermal rectifier, graphene nanoribbons have much higher rectification ratio even in large scale. Our results demonstrate that asymmetric graphene ribbon might be a promising structure for practical thermal (phononics) device.
引用
收藏
页数:3
相关论文
共 31 条
[1]   THEORETICAL INTERPRETATION OF ATOMIC-FORCE-MICROSCOPE IMAGES OF GRAPHITE [J].
ABRAHAM, FF ;
BATRA, IP .
SURFACE SCIENCE, 1989, 209 (1-2) :L125-L132
[2]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[3]   Solid-state thermal rectifier [J].
Chang, C. W. ;
Okawa, D. ;
Majumdar, A. ;
Zettl, A. .
SCIENCE, 2006, 314 (5802) :1121-1124
[4]   Graphene nano-ribbon electronics [J].
Chen, Zhihong ;
Lin, Yu-Ming ;
Rooks, Michael J. ;
Avouris, Phaedon .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02) :228-232
[5]   Unusual field and temperature dependence of the Hall effect in graphene [J].
Falkovsky, L. A. .
PHYSICAL REVIEW B, 2007, 75 (03)
[6]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[7]   Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits [J].
Ghosh, S. ;
Calizo, I. ;
Teweldebrhan, D. ;
Pokatilov, E. P. ;
Nika, D. L. ;
Balandin, A. A. ;
Bao, W. ;
Miao, F. ;
Lau, C. N. .
APPLIED PHYSICS LETTERS, 2008, 92 (15)
[8]   Energy band-gap engineering of graphene nanoribbons [J].
Han, Melinda Y. ;
Oezyilmaz, Barbaros ;
Zhang, Yuanbo ;
Kim, Philip .
PHYSICAL REVIEW LETTERS, 2007, 98 (20)
[9]   CANONICAL DYNAMICS - EQUILIBRIUM PHASE-SPACE DISTRIBUTIONS [J].
HOOVER, WG .
PHYSICAL REVIEW A, 1985, 31 (03) :1695-1697
[10]   Asymmetric heat conduction in nonlinear lattices [J].
Hu, Bambi ;
Yang, Lei ;
Zhang, Yong .
PHYSICAL REVIEW LETTERS, 2006, 97 (12)