An arbitrary wavelength solver for global gyrokinetic simulations. Application to the study of fine radial structures on microturbulence due to non-adiabatic passing electron dynamics

被引:33
作者
Dominski, J. [1 ]
McMillan, B. F. [2 ]
Brunner, S. [1 ]
Merlo, G. [1 ]
Tran, T. -M. [1 ]
Villard, L. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland
[2] Univ Warwick, Dept Phys, CFSA, Coventry CV4 7AL, W Midlands, England
基金
瑞士国家科学基金会;
关键词
TURBULENCE; DRIVEN; CODE;
D O I
10.1063/1.4976120
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The influence of the fine layers of the non-adiabatic passing electron response on electrostatic turbulent transport, previously studied systematically in flux tube geometry [Dominski et al., Phys. Plasmas 22, 062303 (2015)], is pursued in global geometry in conditions relevant for the TCV tokamak with a deuterium plasma (m(i)/m(e) = 3672). The spectral organization of the passing electron turbulent flux and its dependence on the radial profile of the safety factor are revealed. A radially dependent toroidal spectral analysis of the turbulent fluxes led to the key result that the particle and heat diffusivities of passing-electrons are proportional to the local density of low-order mode rational surfaces. To permit this study of the short radial scales associated with the passing electron dynamics, a new field solver valid at an arbitrary wavelength is implemented in ORB5, for the gyrokinetic quasi-neutrality equation. A benchmark is conducted against the global version of the gyrokinetic code GENE, showing very good agreement.
引用
收藏
页数:24
相关论文
共 43 条
[1]   On the definition of a kinetic equilibrium in global gyrokinetic simulations [J].
Angelino, P. ;
Bottino, A. ;
Hatzky, R. ;
Jolliet, S. ;
Sauter, O. ;
Tran, T. M. ;
Villard, L. .
PHYSICS OF PLASMAS, 2006, 13 (05)
[2]  
[Anonymous], 1978, A Practical Guide to Splines
[3]   Global Nonlinear Electromagnetic Simulations of Tokamak Turbulence [J].
Bottino, Alberto ;
Scott, Bruce ;
Brunner, Stephan ;
McMillan, Ben F. ;
Trach Minh Tran ;
Vernay, Thibaut ;
Villard, Laurent ;
Jolliet, Sebastien ;
Hatzky, Roman ;
Peeters, Arthur G. .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2010, 38 (09) :2129-2135
[4]   Foundations of nonlinear gyrokinetic theory [J].
Brizard, A. J. ;
Hahm, T. S. .
REVIEWS OF MODERN PHYSICS, 2007, 79 (02) :421-468
[5]  
Brizard Alain J., 2009, Journal of Physics: Conference Series, V169, DOI 10.1088/1742-6596/169/1/012003
[6]   Variational principle for nonlinear gyrokinetic Vlasov-Maxwell equations [J].
Brizard, AJ .
PHYSICS OF PLASMAS, 2000, 7 (12) :4816-4822
[7]   On the dynamical reduction of the Vlasov equation [J].
Brizard, Alain J. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (01) :24-33
[8]   On the effects of the equilibrium model in gyrokinetic simulations: from s-α to diverted MHD equilibrium [J].
Burckel, A. ;
Sauter, O. ;
Angioni, C. ;
Candy, J. ;
Fable, E. ;
Lapillonne, X. .
THEORY OF FUSION PLASMAS: JOINT VARENNA-LAUSANNE INTERNATIONAL WORKSHOP, 2010, 260
[9]   Role of nonadiabatic untrapped electrons in global electrostatic ion temperature gradient driven modes in a tokamak [J].
Chowdhury, J. ;
Ganesh, R. ;
Angelino, P. ;
Vaclavik, J. ;
Villard, L. ;
Brunner, S. .
PHYSICS OF PLASMAS, 2008, 15 (07)
[10]  
Collier J., 2015, THESIS