The radius of convexity of normalized Bessel functions of the first kind

被引:65
作者
Baricz, Arpad [1 ]
Szasz, Robert [2 ]
机构
[1] Univ Babes Bolyai, Dept Econ, Cluj Napoca 400591, Romania
[2] Sapientia Hungarian Univ Transylvania, Dept Math & Informat, Tarya Mures 540485, Romania
关键词
Normalized Bessel functions of the first kind; convex functions; radius of; convexity; Dini function; residue theorem; minimum principle for harmonic functions; zeros of Bessel functions; STARLIKENESS; UNIVALENCE;
D O I
10.1142/S0219530514500316
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we determine the radius of convexity for three kinds of normalized Bessel functions of the first kind. In the mentioned cases the normalized Bessel functions are starlike-univalent and convex-univalent, respectively, on the determined disks. The key tools in the proofs of the main results are some new Mittag-Leffler expansions for quotients of Bessel functions of the first kind, special properties of the zeros of Bessel functions of the first kind and their derivative, and the fact that the smallest positive zeros of some Dini functions are less than the first positive zero of the Bessel function of the first kind. Moreover, we find the optimal parameters for which these normalized Bessel functions are convex in the open unit disk. In addition, we disprove a conjecture of Baricz and Ponnusamy concerning the convexity of the Bessel function of the first kind.
引用
收藏
页码:485 / 509
页数:25
相关论文
共 29 条
[1]   On some inequalities for the gamma and psi functions [J].
Alzer, H .
MATHEMATICS OF COMPUTATION, 1997, 66 (217) :373-389
[2]  
[Anonymous], 2010, Handbook of Mathematical Functions
[3]  
Baricz A., 2006, Mathematica, V48, P13
[4]  
Baricz A., 2014, PREPRINT
[5]  
Baricz A, 2010, Lecture Notes in Mathematics, DOI DOI 10.1007/978-3-642-12230-9
[6]  
Baricz A, 2008, PUBL MATH-DEBRECEN, V73, P155
[7]   THE RADIUS OF STARLIKENESS OF NORMALIZED BESSEL FUNCTIONS OF THE FIRST KIND [J].
Baricz, Arpad ;
Kupan, Pal Aurel ;
Szasz, Robert .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (06) :2019-2025
[8]  
Baricz A, 2014, 2014 IEEE 9TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI), P323, DOI 10.1109/SACI.2014.6840085
[9]   Starlikeness and convexity of generalized Bessel functions [J].
Baricz, Arpad ;
Ponnusamy, Saminathan .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2010, 21 (09) :641-653
[10]  
Brown R. K., 1982, INT J MATH MATH SCI, V5, P459