Electron Transfer Kinetics on Mono- and Multilayer Graphene

被引:163
作者
Velicky, Matej [1 ]
Bradley, Dan F. [5 ]
Cooper, Adam J. [1 ]
Hill, Ernie W. [2 ]
Kinloch, Ian A. [3 ]
Mishchenko, Artem [4 ]
Novoselov, Konstantin S. [4 ]
Patten, Hollie V. [1 ]
Toth, Peter S. [1 ]
Valota, Anna T. [1 ]
Worrall, Stephen D. [1 ]
Dryfe, Robert A. W. [1 ]
机构
[1] Univ Manchester, Sch Chem, Oxford Rd, Manchester M13 9PL, Lancs, England
[2] Univ Manchester, Sch Comp Sci, Manchester M13 9PL, Lancs, England
[3] Univ Manchester, Sch Mat, Manchester M13 9PL, Lancs, England
[4] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England
[5] Univ Liverpool, Dept Chem, Liverpool L69 7ZD, Merseyside, England
基金
英国工程与自然科学研究理事会;
关键词
graphene; graphite; basal plane; electron transfer; kinetics; electrochemistry; voltammetry; CYCLIC VOLTAMMETRY; ELECTROCHEMICAL-BEHAVIOR; GRAPHITE; CARBON; MONOLAYER; ADSORPTION; REACTIVITY; GOLD;
D O I
10.1021/nn504298r
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Understanding of the electrochemical properties of graphene, especially the electron transfer kinetics of a redox reaction between the graphene surface and a molecule, in comparison to graphite or other carbon-based materials, is essential for its potential in energy conversion and storage to be realized. Here we use voltammetric determination of the electron transfer rate for three redox mediators, ferricyanide, hexaammineruthenium, and hexachloroiridate (Fe(CN)(6)(3-), Ru(NH3)(6)(3+), and IrCl62-, respectively), to measure the reactivity of graphene samples prepared by mechanical exfoliation of natural graphite. Electron transfer rates are measured for varied number of graphene layers (1 to ca. 1000 layers) using microscopic droplets. The basal planes of mono- and multilayer graphene, supported on an insulating Si/SiO2 substrate, exhibit significant electron transfer activity and changes in kinetics are observed for all three mediators. No significant trend in kinetics with flake thickness is discernible for each mediator; however, a large variation in kinetics is observed across the basal plane of the same flakes, indicating that local surface conditions affect the electrochemical performance. This is confirmed by in situ graphite exfoliation, which reveals significant deterioration of initially, near-reversible kinetics for Ru(NH3)(6)(3+) when comparing the atmosphere-aged and freshly exfoliated graphite surfaces.
引用
收藏
页码:10089 / 10100
页数:12
相关论文
共 53 条
[1]   Electrochemistry of folded graphene edges [J].
Ambrosi, Adriano ;
Bonanni, Alessandra ;
Pumera, Martin .
NANOSCALE, 2011, 3 (05) :2256-2260
[2]  
[Anonymous], 2001, ELECTROCHEMICAL METH
[3]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[4]   Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites [J].
Banks, CE ;
Davies, TJ ;
Wildgoose, GG ;
Compton, RG .
CHEMICAL COMMUNICATIONS, 2005, (07) :829-841
[5]   Making graphene visible [J].
Blake, P. ;
Hill, E. W. ;
Castro Neto, A. H. ;
Novoselov, K. S. ;
Jiang, D. ;
Yang, R. ;
Booth, T. J. ;
Geim, A. K. .
APPLIED PHYSICS LETTERS, 2007, 91 (06)
[6]   Graphene electrochemistry: fundamental concepts through to prominent applications [J].
Brownson, Dale A. C. ;
Kampouris, Dimitrios K. ;
Banks, Craig E. .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (21) :6944-6976
[7]   Electrochemistry of graphene: not such a beneficial electrode material? [J].
Brownson, Dale A. C. ;
Munro, Lindsey J. ;
Kampouris, Dimitrios K. ;
Banks, Craig E. .
RSC ADVANCES, 2011, 1 (06) :978-988
[8]   CVD graphene electrochemistry: the role of graphitic islands [J].
Brownson, Dale A. C. ;
Banks, Craig E. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (35) :15825-15828
[9]   The cyclic voltammetric response of electrochemically heterogeneous surfaces [J].
Davies, TJ ;
Moore, RR ;
Banks, CE ;
Compton, RG .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2004, 574 (01) :123-152
[10]   Are There Fundamental Limitations on the Sheet Resistance and Transmittance of Thin Graphene Films? [J].
De, Sukanta ;
Coleman, Jonathan N. .
ACS NANO, 2010, 4 (05) :2713-2720