Incoherent Noise Suppression of Seismic Data Based on Robust Low-Rank Approximation

被引:23
|
作者
Zhang, Mi [1 ,2 ]
Liu, Yang [1 ,3 ]
Zhang, Haoran [1 ]
Chen, Yangkang [4 ]
机构
[1] China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102200, Peoples R China
[2] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA
[3] China Univ Petr, Sch Petr, Karamay 834000, Peoples R China
[4] Zhejiang Univ, Sch Earth Sci, Hangzhou 310027, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2020年 / 58卷 / 12期
关键词
Incoherent noise; low-rank approximation; seismic data; subspace learning; SINGULAR-SPECTRUM ANALYSIS; HYPERBOLIC-TRACE TFPF; DATA INTERPOLATION; SUBSPACE-TRACKING; T-X; ATTENUATION; RECONSTRUCTION; PREDICTION; DECOMPOSITION; OPTIMIZATION;
D O I
10.1109/TGRS.2020.2991438
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Incoherent noise is one of the most common noise widely distributed in seismic data. To improve the interpretation accuracy of the underground structure, incoherent noise needs to be adequately suppressed before the final imaging. We propose a novel method for suppressing seismic incoherent noise based on the robust low-rank approximation. After the Hankelization, seismic data will show strong low-rank features. Our goal is to obtain the stable and accurate low-rank approximation of the Hankel matrix and then reconstruct the denoised data. We construct a mixed model of the nuclear norm and the l(1) norm to express the low-rank approximation of the Hankel matrix constructed in the frequency domain. Essentially, the adopted model is an optimization for the subspace similar to the online subspace tracking method, thus avoiding the time-consuming singular value decomposition (SVD). We introduce the orthonormal subspace learning to convert the nuclear norm to the l(1) norm to optimize the orthonormal subspace and the corresponding coefficient. Finally, two optimization strategies-the alternating direction method and the block coordinate descent method-are applied to obtain the optimized orthonormal subspace and the corresponding coefficient for representing the low-rank approximation of the Hankel matrix. We perform incoherent noise attenuation tests on synthetic and real seismic data. Compared with other denoising methods, the proposed method produces small signal errors while effectively suppressing the seismic incoherent noise and has a high computational efficiency.
引用
收藏
页码:8874 / 8887
页数:14
相关论文
共 50 条
  • [21] Random noise attenuation of 2D seismic data based on sparse low-rank estimation of the seismic signal
    Anvari, Rasoul
    Mohammadi, Mokhtar
    Kahoo, Amin Roshandel
    Khan, Nabeel Ali
    Abdullah, Abdulqadir Ismail
    COMPUTERS & GEOSCIENCES, 2020, 135
  • [22] Robust low-rank data matrix approximations
    Feng XingDong
    He XuMing
    SCIENCE CHINA-MATHEMATICS, 2017, 60 (02) : 189 - 200
  • [23] Low-rank seismic denoising with optimal rank selection for hankel matrices
    Wang, Chong
    Zhu, Zhihui
    Gu, Hanming
    GEOPHYSICAL PROSPECTING, 2020, 68 (03) : 892 - 909
  • [24] On Approximation Algorithm for Orthogonal Low-Rank Tensor Approximation
    Yang, Yuning
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 194 (03) : 821 - 851
  • [25] Sparse Representation and Low-rank Approximation for Robust Face Recognition
    Quach, Kha Gia
    Duong, Chi Nhan
    Bui, Tien D.
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 1330 - 1335
  • [26] Denoising of the Speckle Noise by Robust Low-rank Tensor Decomposition
    Calis, Metin
    Hunyadi, Borbala
    32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024, 2024, : 1157 - 1161
  • [27] Dynamical low-rank approximation
    Koch, Othmar
    Lubich, Christian
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (02) : 434 - 454
  • [28] From low-rank retractions to dynamical low-rank approximation and back
    Seguin, Axel
    Ceruti, Gianluca
    Kressner, Daniel
    BIT NUMERICAL MATHEMATICS, 2024, 64 (03)
  • [29] Fast Nonnegative Matrix/Tensor Factorization Based on Low-Rank Approximation
    Zhou, Guoxu
    Cichocki, Andrzej
    Xie, Shengli
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (06) : 2928 - 2940
  • [30] Low-Rank Approximation based LineCast for Video Broadcasting
    Yin, Wenbin
    Fan, Xiaopeng
    Shi, Yunhui
    Zhao, Debin
    2016 30TH ANNIVERSARY OF VISUAL COMMUNICATION AND IMAGE PROCESSING (VCIP), 2016,