Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions

被引:768
作者
Zhang, Linjie [1 ,2 ]
Su, Zixue [3 ]
Jiang, Feilong [1 ]
Yang, Lingling [1 ]
Qian, Jinjie [1 ,2 ]
Zhou, Youfu [1 ]
Li, Wenmu [1 ]
Hong, Maochun [1 ]
机构
[1] Chinese Acad Sci, Fujian Inst Res Struct Matter, Key Lab Optoelect Mat Chem & Phys, Fuzhou 350002, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Univ Erlangen Nurnberg, Dept Mat Sci, D-91058 Erlangen, Germany
关键词
METAL-FREE ELECTROCATALYSTS; ZEOLITIC-IMIDAZOLATE-FRAMEWORK; HYDROGEN STORAGE CAPACITY; ORGANIC FRAMEWORK; FUEL-CELLS; GRAPHENE OXIDE; NANOPOROUS CARBON; NANOTUBE ARRAYS; ALKALINE-MEDIUM; RECENT PROGRESS;
D O I
10.1039/c4nr00348a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nitrogen-doped graphitic porous carbons (NGPCs) have been synthesized by using a zeolite-type nanoscale metal-organic framework (NMOF) as a self-sacrificing template, which simultaneously acts as both the carbon and nitrogen sources in a facile carbonization process. The NGPCs not only retain the nanopolyhedral morphology of the parent NMOF, but also possess rich nitrogen, high surface area and hierarchical porosity with well-conducting networks. The promising potential of NGPCs as metal-free electrocatalysts for oxygen reduction reactions (ORR) in fuel cells is demonstrated. Compared with commercial Pt/C, the optimized NGPC-1000-10 (carbonized at 1000 degrees C for 10 h) catalyst exhibits comparable electrocatalytic activity via an efficient four-electron-dominant ORR process coupled with superior methanol tolerance as well as cycling stability in alkaline media. Furthermore, the controlled experiments reveal that the optimum activity of NGPC-1000-10 can be attributed to the synergetic contributions of the abundant active sites with high graphitic-N portion, high surface area and porosity, and the high degree of graphitization. Our findings suggest that solely MOF-derived heteroatom-doped carbon materials can be a promising alternative for Pt-based catalysts in fuel cells.
引用
收藏
页码:6590 / 6602
页数:13
相关论文
共 66 条
[1]   Preparation and hydrogen storage capacity of templated and activated carbons nanocast from commercially available zeolitic imidazolate framework [J].
Almasoudi, A. ;
Mokaya, R. .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (01) :146-152
[2]   From assembled metal-organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage [J].
Amali, Arlin Jose ;
Sun, Jian-Ke ;
Xu, Qiang .
CHEMICAL COMMUNICATIONS, 2014, 50 (13) :1519-1522
[3]   Effect of carbon support nanostructure on the oxygen reduction activity of Pt/C catalysts [J].
Banham, Dustin ;
Feng, Fangxia ;
Pei, Katie ;
Ye, Siyu ;
Birss, Viola .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (08) :2812-2820
[4]  
Britto PJ, 1999, ADV MATER, V11, P154, DOI 10.1002/(SICI)1521-4095(199902)11:2<154::AID-ADMA154>3.0.CO
[5]  
2-B
[6]   A Nitrogen-Doped Graphene/Carbon Nanotube Nanocomposite with Synergistically Enhanced Electrochemical Activity [J].
Chen, Ping ;
Xiao, Tian-Yuan ;
Qian, Yu-Hong ;
Li, Shan-Shan ;
Yu, Shu-Hong .
ADVANCED MATERIALS, 2013, 25 (23) :3192-3196
[7]   A review on non-precious metal electrocatalysts for PEM fuel cells [J].
Chen, Zhongwei ;
Higgins, Drew ;
Yu, Aiping ;
Zhang, Lei ;
Zhang, Jiujun .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3167-3192
[8]   Nitrogen doped carbon nanotubes and their impact on the oxygen reduction reaction in fuel cells [J].
Chen, Zhu ;
Higgins, Drew ;
Chen, Zhongwei .
CARBON, 2010, 48 (11) :3057-3065
[9]   Controlling Zeolitic Imidazolate Framework Nano- and Microcrystal Formation: Insight into Crystal Growth by Time-Resolved In Situ Static Light Scattering [J].
Cravillon, Janosch ;
Nayuk, Roman ;
Springer, Sergej ;
Feldhoff, Armin ;
Huber, Klaus ;
Wiebcke, Michael .
CHEMISTRY OF MATERIALS, 2011, 23 (08) :2130-2141
[10]   Space-Confinement-Induced Synthesis of Pyridinic- and Pyrrolic-Nitrogen-Doped Graphene for the Catalysis of Oxygen Reduction [J].
Ding, Wei ;
Wei, Zidong ;
Chen, Siguo ;
Qi, Xueqiang ;
Yang, Tao ;
Hu, Jinsong ;
Wang, Dong ;
Wan, Li-Jun ;
Alvi, Shahnaz Fatima ;
Li, Li .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (45) :11755-11759