EFFICIENT INFERENCE FOR LONGITUDINAL DATA VARYING-COEFFICIENT REGRESSION MODELS

被引:0
作者
Li, Rui [1 ,2 ]
Li, Xiaoli [1 ]
Zhou, Xian [3 ]
机构
[1] Shanghai Univ Finance & Econ, Sch Stat & Management, Shanghai 200433, Peoples R China
[2] Shanghai Univ Int Business & Econ, Sch Business Informat, Shanghai 201620, Peoples R China
[3] Macquarie Univ, Dept Appl Finance & Actuarial Studies, N Ryde, NSW 2109, Australia
基金
中国国家自然科学基金;
关键词
asymptotic normality; informative correlation; locally linear; two-stage estimator; VARIABLE SELECTION; SEMIPARAMETRIC REGRESSION; COVARIANCE-STRUCTURES; AUTOREGRESSIVE MODEL; EMPIRICAL LIKELIHOOD; LINEAR-MODELS;
D O I
10.1111/anzs.12139
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Informative identification of the within-subject correlation is essential in longitudinal studies in order to forecast the trajectory of each subject and improve the validity of inferences. In this paper, we fit this correlation structure by employing a time adaptive autoregressive error process. Such a process can automatically accommodate irregular and possibly subject-specific observations. Based on the fitted correlation structure, we propose an efficient two-stage estimator of the unknown coefficient functions by using a local polynomial approximation. This procedure does not involve within-subject covariance matrices and hence circumvents the instability of calculating their inverses. The asymptotic normality of resulting estimators is established. Numerical experiments were conducted to check the finite sample performance of our method and an example of an application involving a set of medical data is also illustrated.
引用
收藏
页码:545 / 570
页数:26
相关论文
共 40 条
[1]   SEMIPARAMETRIC LONGITUDINAL MODEL WITH IRREGULAR TIME AUTOREGRESSIVE ERROR PROCESS [J].
Bai, Yang ;
Huang, Jian ;
Li, Rui ;
You, Jinhong .
STATISTICA SINICA, 2015, 25 (02) :507-527
[2]   NONPARAMETRIC INDEPENDENCE SCREENING AND STRUCTURE IDENTIFICATION FOR ULTRA-HIGH DIMENSIONAL LONGITUDINAL DATA [J].
Cheng, Ming-Yen ;
Honda, Toshio ;
Li, Jialiang ;
Peng, Heng .
ANNALS OF STATISTICS, 2014, 42 (05) :1819-1849
[3]  
Fan J., 1996, Local Polynomial Modelling and Its Applications
[4]   Analysis of longitudinal data with semiparametric estimation of covariance function [J].
Fan, Jianqing ;
Huang, Tao ;
Li, Runze .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (478) :632-641
[5]  
Fan JQ, 2008, STAT INTERFACE, V1, P179
[6]   New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis [J].
Fan, JQ ;
Li, R .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (467) :710-723
[7]   Two-step estimation of functional linear models with applications to longitudinal data [J].
Fan, JQ ;
Zhang, JT .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2000, 62 :303-322
[8]   VARIABLE BANDWIDTH AND LOCAL LINEAR-REGRESSION SMOOTHERS [J].
FAN, JQ ;
GIJBELS, I .
ANNALS OF STATISTICS, 1992, 20 (04) :2008-2036
[9]   Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data [J].
Hoover, DR ;
Rice, JA ;
Wu, CO ;
Yang, LP .
BIOMETRIKA, 1998, 85 (04) :809-822
[10]  
Huang JHZ, 2004, STAT SINICA, V14, P763