On special zeros of p-adic L-functions of Hilbert modular forms

被引:32
作者
Spiess, Michael [1 ]
机构
[1] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
关键词
REPRESENTATIONS; COHOMOLOGY;
D O I
10.1007/s00222-013-0465-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be a modular elliptic curve over a totally real number field F. We prove the weak exceptional zero conjecture which links a (higher) derivative of the p-adic L-function attached to E to certain p-adic periods attached to the corresponding Hilbert modular form at the places above p where E has split multiplicative reduction. Under some mild restrictions on p and the conductor of E we deduce the exceptional zero conjecture in the strong form (i.e. where the automorphic p-adic periods are replaced by the -invariants of E defined in terms of Tate periods) from a special case proved earlier by Mok. Crucial for our method is a new construction of the p-adic L-function of E in terms of local data.
引用
收藏
页码:69 / 138
页数:70
相关论文
共 30 条
[1]  
[Anonymous], 1982, GRADUATE TEXTS MATH
[2]  
[Anonymous], CAMBRIDGE STUDIES AD
[3]   MODULAR-REPRESENTATIONS OF GL(2) OF A LOCAL-FIELD - THE ORDINARY, UNRAMIFIED CASE [J].
BARTHEL, L ;
LIVNE, R .
JOURNAL OF NUMBER THEORY, 1995, 55 (01) :1-27
[4]  
Bertolini M, 2010, ASTERISQUE, P29
[5]   L-invariant and p-adic special series [J].
Breuil, C .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2004, 37 (04) :559-610
[6]  
Bushnell, 2006, GRUNDL MATH WISSEN, V335
[7]  
CARAYOL H, 1986, ANN SCI ECOLE NORM S, V19, P409
[8]   SOME RESULTS OF ATKIN AND LEHNER [J].
CASSELMAN, W .
MATHEMATISCHE ANNALEN, 1973, 201 (04) :301-314
[9]  
Charollois P., PREPRINT
[10]   P-ADIC L-FUNCTIONS OF HILBERT MODULAR-FORMS [J].
DABROWSKI, A .
ANNALES DE L INSTITUT FOURIER, 1994, 44 (04) :1025-1041