Jacobi Thetanullwerte, periods of elliptic curves and minimal equations

被引:0
|
作者
Guàrdia, J [1 ]
机构
[1] Escola Politecn Super Engn Vilanova Geltru, Dept Matemat Aplicada 4, E-08800 Vilanova I La Geltru, Spain
关键词
Thetanullwerte; elliptic curves; periods; minimal equations;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a family of modular functions which provide the coefficients of algebraic Weierstrass equations for complex toruses corresponding to elliptic curves defined over a number field. The equations built with these new modular functions have good arithmetical properties, since they are minimal global equations outside 2 and 3.
引用
收藏
页码:115 / 123
页数:9
相关论文
共 50 条
  • [1] PERIODS OF QUADRATIC TWISTS OF ELLIPTIC CURVES
    Pal, Vivek
    Agashe, Amod
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (05) : 1513 - 1525
  • [2] Periods of Tribonacci sequences and elliptic curves
    Ait-Amrane, Lyes
    Belbachir, Hacene
    ALGEBRA & DISCRETE MATHEMATICS, 2018, 25 (01): : 1 - 17
  • [3] Minimal subfields of elliptic curves
    Ghosh, Samprit
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (04): : 1029 - 1045
  • [4] Improving the arithmetic of elliptic curves in the Jacobi model
    Duquesne, Sylvain
    INFORMATION PROCESSING LETTERS, 2007, 104 (03) : 101 - 105
  • [5] Pairing Computation on Elliptic Curves of Jacobi Quartic Form
    Wang Hong
    Wang Kunpeng
    Zhang Lijun
    Li Bao
    CHINESE JOURNAL OF ELECTRONICS, 2011, 20 (04): : 655 - 661
  • [6] Efficient computation of pairings on Jacobi quartic elliptic curves
    Duquesne, Sylvain
    El Mrabet, Nadia
    Fouotsa, Emmanuel
    JOURNAL OF MATHEMATICAL CRYPTOLOGY, 2014, 8 (04) : 331 - 362
  • [7] Pairing computation on elliptic curves of Jacobi quartic form
    State Key Laboratory of Information Security, Graduate University, Chinese Academy of Sciences, Beijing 100049, China
    Chin J Electron, 4 (655-661):
  • [8] Approximation of modulus, periods and values of two Jacobi elliptic functions
    Barabash, G. M.
    Kholyavka, Y. M.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2014, 6 (02) : 191 - 195
  • [9] Minimal periods for semilinear parabolic equations
    Herzog, Gerd
    Kunstmann, Peer Christian
    ARCHIV DER MATHEMATIK, 2024, 122 (05) : 559 - 573
  • [10] Periods of (q,r)-Fibonacci sequences and elliptic curves
    Coleman, DA
    Dugan, CJ
    McEwen, RA
    Reiter, CA
    Tang, TT
    FIBONACCI QUARTERLY, 2006, 44 (01): : 59 - 70