Lehmer points and visible points on affine varieties over finite fields

被引:2
作者
Mak, Kit-Ho [1 ]
Zaharescu, Alexandru [2 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
D-H-LEHMER; EXPONENTIAL-SUMS; APPROXIMATING REALS; RATIONAL-POINTS;
D O I
10.1017/S0305004113000613
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let V be an absolutely irreducible affine variety over F-p. A Lehmer point on V is a point whose coordinates satisfy some prescribed congruence conditions, and a visible point is one whose coordinates are relatively prime. Asymptotic results for the number of Lehmer points and visible points on V are obtained, and the distribution of visible points into different congruence classes is investigated.
引用
收藏
页码:193 / 207
页数:15
相关论文
共 28 条
[1]   Lehmer k-tuples [J].
Alkan, E ;
Stan, F ;
Zaharescu, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (10) :2807-2815
[2]   ON EXPONENTIAL SUMS IN FINITE FIELDS [J].
BOMBIERI, E .
AMERICAN JOURNAL OF MATHEMATICS, 1966, 88 (01) :71-&
[3]   EXPONENTIAL SUMS IN FINITE-FIELDS .2. [J].
BOMBIERI, E .
INVENTIONES MATHEMATICAE, 1978, 47 (01) :29-39
[4]   On the parity of k-th powers modulo p. A generalization of a problem of Lehmer [J].
Bourgain, Jean ;
Cochrane, Todd ;
Paulhus, Jennifer ;
Pinner, Christopher .
ACTA ARITHMETICA, 2011, 147 (02) :173-203
[5]  
CHAN T. H., 2010, B POL ACAD SCI MATH, V58, P17, DOI DOI 10.4064/BA58-1-2
[6]   Approximating reals by sums of two rationals [J].
Chan, Tsz Ho .
JOURNAL OF NUMBER THEORY, 2008, 128 (05) :1182-1194
[7]   Approximating reals by sums of rationals [J].
Chan, Tsz Ho .
JOURNAL OF NUMBER THEORY, 2009, 129 (02) :316-324
[8]   On the concentration of points of polynomial maps and applications [J].
Cilleruelo, Javier ;
Garaev, Moubariz Z. ;
Ostafe, Alina ;
Shparlinski, Igor E. .
MATHEMATISCHE ZEITSCHRIFT, 2012, 272 (3-4) :825-837
[9]   Generalization of a problem of Lehmer [J].
Cobeli, C ;
Zaharescu, A .
MANUSCRIPTA MATHEMATICA, 2001, 104 (03) :301-307
[10]  
Deligne P., 1974, PUBL MATH I HAUTES E, V43, P273