Tauroursodeoxycholic acid protects rat spinal cord neurons after mechanical injury through regulating neuronal autophagy

被引:2
|
作者
Chang, Yueliang [1 ]
Yang, Tingting [3 ]
Ding, Huiqiang [1 ]
Wang, Zili [1 ,4 ,5 ]
Liang, Qiang [2 ]
机构
[1] Ningxia Med Univ, Gen Hosp, Dept Spinal Surg, 804 Shengli St, Yinchuan, Peoples R China
[2] Yantai Yuhuangding Hosp, Dept Spinal Surg, Yantai, Peoples R China
[3] Ningxia Med Univ, Gen Hosp, Yinchuan, Peoples R China
[4] Xian Int Med Ctr Hosp, Dept Spinal Surg, China, Xian, Peoples R China
[5] Ningxia Med Univ, 1160 Shengli St, Yinchuan 750004, Peoples R China
关键词
Spinal cord nerve cells; Mechanical injury; Taurochordoxycholic acid; Autophagy; CELL-DEATH; APOPTOSIS; NEUROPROTECTION; DEPOSITION; MODULATION; TUDCA; MODEL;
D O I
10.1016/j.neulet.2022.136578
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background: To study the protective effect of tauroursodeoxycholic acid (TUDCA) on the spinal cord nerve cells (SCN) of SD rats and to explore the protective mechanism of TUDCA against mechanical injury of the SCN. Material and methods: The SCN of SD rats were cultured in vitro, and a mechanical injury models of 1 mm, 3 mm, and 5 mm SCN were established. The cell survival rate was determined using the MTT assay to determine the optimal degree and time of injury. Different concentrations (0.5, to 20 mmol/L) of TUDCA were used to detect SCN cell survival rate after mechanical injury. MTT assay was used to determine the optimal TUDCA intervention dose. SCN autophagy in different experimental groups were observed by electron microscopy after the best degree of mechanical injury, time of injury, and TUDCA concentration. Beclin-1 and LC3 II/I expressions were detected by western blotting and immunohistochemistry. Results: Survival rate of SCN was close to 50% when the injury interval was 3 mm and the injury time was 24 h, significantly different from those of each group (P < 0.05). At 3 mm injury interval and 24 h injury time, SCN survival rate was approximately 80% when TUDCA concentration was 4 mmol/L, which was significantly different from those of each group (P < 0.05). Cell morphology of the normal control group was complete, with few autophagy lysosomes. Compared with the normal control group, the number of autophagic lysosomes in the mechanical injury group increased, and cell damage was more severe. Compared with the mechanical injury group, the number of autophagy lysosomes in the mechanical injury + TUDCA intervention group increased significantly, and cell damage was less severe. Further, compared with the normal control group, beclin-1 and lc3ii / I expressions in the mechanical injury group were significantly higher (P < 0.05); compared with the mechanical injury group, beclin-1 and lc3ii / I expressions in the mechanical injury + TUDCA intervention group were significantly higher (P < 0.05). Conclusion: TUDCA can protect SCN from mechanical injury in vitro, which may be related to the enhancement of the expression of autophagy-related protein beclin-1 and LC3 II/I.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Atorvastatin activates autophagy and promotes neurological function recovery after spinal cord injury
    Shuang Gao
    Zhong-ming Zhang
    Zhao-liang Shen
    Kai Gao
    Liang Chang
    Yue Guo
    Zhuo Li
    Wei Wang
    Ai-mei Wang
    NeuralRegenerationResearch, 2016, 11 (06) : 977 - 982
  • [42] Inhibition of Autophagy by Estradiol Promotes Locomotor Recovery after Spinal Cord Injury in Rats
    Lin, Chao-Wei
    Chen, Bi
    Huang, Ke-Lun
    Dai, Yu-Sen
    Teng, Hong-Lin
    NEUROSCIENCE BULLETIN, 2016, 32 (02) : 137 - 144
  • [43] Atorvastatin activates autophagy and promotes neurological function recovery after spinal cord injury
    Gao, Shuang
    Zhang, Zhong-ming
    Shen, Zhao-liang
    Gao, Kai
    Chang, Liang
    Guo, Yue
    Li, Zhuo
    Wang, Wei
    Wang, Ai-mei
    NEURAL REGENERATION RESEARCH, 2016, 11 (06) : 977 - 982
  • [44] Intrathecal Injection of 3-Methyladenine Reduces Neuronal Damage and Promotes Functional Recovery via Autophagy Attenuation after Spinal Cord Ischemia/Reperfusion Injury in Rats
    Wei, Xing
    Zhou, Zhentao
    Li, Lingyun
    Gu, Jun
    Wang, Chen
    Xu, Fuqi
    Dong, Qirong
    Zhou, Xiaozhong
    BIOLOGICAL & PHARMACEUTICAL BULLETIN, 2016, 39 (05) : 665 - 673
  • [45] Injectable Hydrogel Containing Tauroursodeoxycholic Acid for Anti-neuroinflammatory Therapy After Spinal Cord Injury in Rats
    Han, Gong Ho
    Kim, Seong Jun
    Ko, Wan-Kyu
    Lee, Daye
    Lee, Jae Seo
    Nah, Haram
    Han, In-Bo
    Sohn, Seil
    MOLECULAR NEUROBIOLOGY, 2020, 57 (10) : 4007 - 4017
  • [46] Tauroursodeoxycholic acid alleviates secondary injury in the spinal cord via up-regulation of CIBZ gene
    Zhang, Zongmeng
    Chen, Jie
    Chen, Fanghui
    Yu, Daolun
    Li, Rui
    Lv, Chenglong
    Wang, Haosen
    Li, Honglin
    Li, Jun
    Cai, Yafei
    CELL STRESS & CHAPERONES, 2018, 23 (04) : 551 - 560
  • [47] Autophagy Reduces Neuronal Damage and Promotes Locomotor Recovery via Inhibition of Apoptosis After Spinal Cord Injury in Rats
    Peifu Tang
    Hongping Hou
    Licheng Zhang
    Xia Lan
    Zhi Mao
    Daohong Liu
    Chunqing He
    Hailong Du
    Lihai Zhang
    Molecular Neurobiology, 2014, 49 : 276 - 287
  • [48] Autophagy Reduces Neuronal Damage and Promotes Locomotor Recovery via Inhibition of Apoptosis After Spinal Cord Injury in Rats
    Tang, Peifu
    Hou, Hongping
    Zhang, Licheng
    Lan, Xia
    Mao, Zhi
    Liu, Daohong
    He, Chunqing
    Du, Hailong
    Zhang, Lihai
    MOLECULAR NEUROBIOLOGY, 2014, 49 (01) : 276 - 287
  • [49] Buyang Huanwu decoction improves neural recovery after spinal cord injury in rats through the mTOR signaling pathway and autophagy
    Nie, Ying
    Fan, Yujie
    Zhang, Xi
    Li, Xiaosong
    Yin, Jian
    Li, Meili
    Hu, Zhaoyong
    Li, Liang
    Wang, Xiaoye
    JOURNAL OF SPINAL CORD MEDICINE, 2023, 46 (01) : 99 - 106
  • [50] Therapeutic effect of regulating autophagy in spinal cord injury: a network meta-analysis of direct and indirect comparisons
    Zhang, Duo
    Zhu, Di
    Wang, Fang
    Zhu, Ji-Chao
    Zhai, Xu
    Yuan, Yuan
    Li, Chen-Xi
    NEURAL REGENERATION RESEARCH, 2020, 15 (06) : 1120 - 1132