On numerical solutions of the stochastic wave equation

被引:44
作者
Walsh, John B. [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
关键词
D O I
10.1215/ijm/1258059497
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that there is a numerical scheme for the stochastic wave equation which converges in L-p at a rate of O(root h), and which converges a.s. uniformly on compact sets at a rate O(root h\ log h\(epsilon)), for any epsilon > 0, where h is the step size in both time and space. We show that this is the optimal rate: there is no scheme depending on the same increments of white noise which has a higher order of convergence.
引用
收藏
页码:991 / 1018
页数:28
相关论文
共 8 条
[1]  
[Anonymous], 1992, APPL MATH NEW YORK
[2]   BARRIER PROBLEMS FOR VIBRATING STRING [J].
CABANA, EM .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1972, 22 (01) :13-&
[3]   STOCHASTIC INTEGRALS IN PLANE [J].
CAIROLI, R ;
WALSH, JB .
ACTA MATHEMATICA, 1975, 134 (1-2) :111-183
[4]   RANDOM NON-LINEAR WAVE-EQUATIONS - SMOOTHNESS OF THE SOLUTIONS [J].
CARMONA, R ;
NUALART, D .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 79 (04) :469-508
[5]  
Davie AM, 2001, MATH COMPUT, V70, P121, DOI 10.1090/S0025-5718-00-01224-2
[6]   Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise I [J].
Gyongy, I .
POTENTIAL ANALYSIS, 1998, 9 (01) :1-25
[7]  
QUERSARDANYONS L, IN PRESS POTENTIAL A
[8]  
WALSH JB, 1986, LECT NOTES MATH, V1180, P265