Identification Problem for Nonlinear Gao Beam

被引:7
作者
Radova, Jana [1 ,2 ]
Machalova, Jitka [1 ,2 ]
Burkotova, Jana [1 ,2 ]
机构
[1] Palacky Univ Olomouc, Fac Sci, Olomouc 77147, Czech Republic
[2] 17 Listopadu 12, Olomouc 77900, Czech Republic
关键词
nonlinear beam; identification of parameters; material parameters; optimal control method; INVERSE PROBLEM; COEFFICIENT IDENTIFICATION;
D O I
10.3390/math8111916
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the identification of coefficients in the nonlinear beam model which was first introduced by D. Y. Gao in 1996. For the identification of coefficients, an optimal control approach is used. The unknown coefficients are material parameters of the beam and play the role of the control variables. The existence of at least one solution of the optimal control problem is proved. For the studied problem the finite element approximation is provided. Finally some illustrative examples are introduced.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 21 条
[1]  
Adams Robert A, 2003, Sobolev Spaces, V140
[2]   Analysis and simulations of a nonlinear elastic dynamic beam [J].
Andrews, K. T. ;
Dumont, Y. ;
M'Bengue, M. F. ;
Purcell, J. ;
Shillor, M. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (06) :1005-1019
[3]  
Borzi A, 2011, COMPUTATIONAL OPTIMI, V8
[4]  
Cedolin L., 2010, J. Struct. Eng
[5]  
Eisley J.G., 2011, Analysis of Structures. An Introduction Including Numerical Methods
[6]  
Gao DY, 1996, MECH RES COMMUN, V23, P11, DOI 10.1016/0093-6413(95)00071-2
[7]   Finite deformation beam models and triality theory in dynamical post-buckling analysis [J].
Gao, DY .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2000, 35 (01) :103-131
[8]   THE INVERSE PROBLEM FOR THE EULER-BERNOULLI BEAM [J].
GLADWELL, GML .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1986, 407 (1832) :199-218
[9]   Identification problems with given material interfaces [J].
Haslinger, J. ;
Blaheta, R. ;
Hrtus, R. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 310 :129-142
[10]  
Haslinger J., 1996, Finite Element Approximation for Optimal Shape Design, V2nd