Legendre polynomial expansion method for evaluating multipole moments of current density in toroidal devices

被引:3
|
作者
Seo, SH
Kim, J
Huh, SH
Choe, W
Chang, HY
Jeong, SH
机构
[1] Korea Adv Inst Sci & Technol, Dept Phys, Taejon 305701, South Korea
[2] Korea Atom Energy Res Inst, Nucl Physicoengn Team, Taejon 305353, South Korea
关键词
D O I
10.1063/1.873968
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
It is found that multipole moments of toroidal current are given by the coefficients of the Legendre polynomial expansion of the magnetic field on a meridian contour. Using this fact and the orthogonality of the Legendre polynomials, a method is proposed for evaluating the moments from magnetic field measurements through an open-contour. As an application, exact expressions of the first few order moments and the current center position are formulated. Results show that this method is applicable to any aspect ratio tokamaks without the limitation of small displacement of the current center. (C) 2000 American Institute of Physics. [S1070-664X(00)00305-0].
引用
收藏
页码:1487 / 1493
页数:7
相关论文
共 28 条
  • [1] EXACT RELATIONS BETWEEN MULTIPOLE MOMENTS OF THE FLUX AND MOMENTS OF THE TOROIDAL CURRENT-DENSITY IN TOKAMAKS
    VANMILLIGEN, BP
    NUCLEAR FUSION, 1990, 30 (01) : 157 - 160
  • [2] The Legendre Polynomial Axial Expansion Method
    Herring, Nicholas F.
    Collins, Benjamin S.
    Downar, Thomas J.
    Graham, Aaron M.
    NUCLEAR SCIENCE AND ENGINEERING, 2023, 197 (02) : 291 - 307
  • [3] METHOD OF MOMENTS AND THE USE OF MULTIPOLE EXPANSION
    ANDERSSON, T
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 1991, 5 (11) : 1237 - 1257
  • [4] Multipole moments from the partition–expansion method
    Rafael López
    Guillermo Ramírez
    Julio Fernández
    Ignacio Ema
    Jaime Fernández Rico
    Theoretical Chemistry Accounts, 2013, 132
  • [5] Convergence of the Legendre polynomial expansion of the Boltzmann equation for nanoscale devices
    Jungemann, C
    Bollhöfer, M
    Meinerzhagen, B
    PROCEEDINGS OF ESSDERC 2005: 35TH EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE, 2005, : 341 - 344
  • [6] Multipole moments from the partition-expansion method
    Lopez, Rafael
    Ramirez, Guillermo
    Fernandez, Julio
    Ema, Ignacio
    Fernandez Rico, Jaime
    THEORETICAL CHEMISTRY ACCOUNTS, 2013, 132 (12) : 1 - 10
  • [7] CALCULATION OF MUTUAL INDUCTANCES BY MEANS OF THE TOROIDAL MULTIPOLE EXPANSION METHOD
    BORGHI, CA
    REGGIANI, U
    ZAMA, G
    IEEE TRANSACTIONS ON MAGNETICS, 1989, 25 (04) : 2992 - 2994
  • [8] A multipole expansion method for current diffraction from bodies
    Teng, B
    Chen, B
    RECENT ADVANCES IN FLUID MECHANICS, 2004, : 739 - 742
  • [10] An efficient nonlinear interval uncertain optimization method using Legendre polynomial chaos expansion
    Wang, Liqun
    Yang, Guolai
    Li, Zixuan
    Xu, Fengjie
    APPLIED SOFT COMPUTING, 2021, 108