Majorization-Minimization Algorithm for Discriminative Non-Negative Matrix Factorization

被引:1
|
作者
Li, Li [1 ]
Kameoka, Hirokazu [2 ]
Makino, Shoji [1 ]
机构
[1] Univ Tsukuba, Grad Sch Syst & Informat Engn, Tsukuba, Ibaraki 3050821, Japan
[2] NTT Commun Sci Labs, Atsugi, Kanagawa 2430198, Japan
来源
IEEE ACCESS | 2020年 / 8卷
关键词
Training; Spectrogram; Linear programming; Source separation; Standards; Signal processing algorithms; Licenses; Discriminative non-negative matrix factorization (NMF); majorization-minimization; single-channel signal processing; speech enhancement; source separation; DICTIONARY; SEPARATION;
D O I
10.1109/ACCESS.2020.3045791
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a basis training algorithm for discriminative non-negative matrix factorization (NMF) with applications to single-channel audio source separation. With an NMF-based approach to supervised audio source separation, NMF is first applied to train the basis spectra of each source using training examples and then applied to the spectrogram of a mixture signal using the pretrained basis spectra at test time. The source signals can then be separated out using a Wiener filter. Here, a typical way to train the basis spectra is to minimize the dissimilarity measure between the observed spectrogram and the NMF model. However, obtaining the basis spectra in this way does not ensure that the separated signal will be optimal at test time due to the inconsistency between the objective functions for training and separation (Wiener filtering). To address this mismatch, a framework called discriminative NMF (DNMF) has recently been proposed. While this framework is noteworthy in that it uses a common objective function for training and separation, the objective function becomes more analytically complex than that of regular NMF. In the original DNMF work, a multiplicative update algorithm was proposed for the basis training; however, the convergence of the algorithm is not guaranteed and can be very slow. To overcome this weakness, this paper proposes a convergence-guaranteed algorithm for DNMF based on a majorization-minimization principle. Experimental results show that the proposed algorithm outperform the conventional DNMF algorithm as well as the regular NMF algorithm in terms of both the signal-to-distortion and signal-to-interference ratios.
引用
收藏
页码:227399 / 227408
页数:10
相关论文
共 50 条
  • [41] Non-negative Matrix Factorization for EEG
    Jahan, Ibrahim Salem
    Snasel, Vaclav
    2013 INTERNATIONAL CONFERENCE ON TECHNOLOGICAL ADVANCES IN ELECTRICAL, ELECTRONICS AND COMPUTER ENGINEERING (TAEECE), 2013, : 183 - 187
  • [42] Non-Negative Matrix Factorization with Constraints
    Liu, Haifeng
    Wu, Zhaohui
    PROCEEDINGS OF THE TWENTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-10), 2010, : 506 - 511
  • [43] Dropout non-negative matrix factorization
    He, Zhicheng
    Liu, Jie
    Liu, Caihua
    Wang, Yuan
    Yin, Airu
    Huang, Yalou
    KNOWLEDGE AND INFORMATION SYSTEMS, 2019, 60 (02) : 781 - 806
  • [44] Non-negative matrix factorization with α-divergence
    Cichocki, Andrzej
    Lee, Hyekyoung
    Kim, Yong-Deok
    Choi, Seungjin
    PATTERN RECOGNITION LETTERS, 2008, 29 (09) : 1433 - 1440
  • [45] Uniqueness of non-negative matrix factorization
    Laurberg, Hans
    2007 IEEE/SP 14TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2, 2007, : 44 - 48
  • [46] Stretched non-negative matrix factorization
    Gu, Ran
    Rakita, Yevgeny
    Lan, Ling
    Thatcher, Zach
    Kamm, Gabrielle E.
    O'Nolan, Daniel
    Mcbride, Brennan
    Wustrow, Allison
    Neilson, James R.
    Chapman, Karena W.
    Du, Qiang
    Billinge, Simon J. L.
    NPJ COMPUTATIONAL MATERIALS, 2024, 10 (01)
  • [47] Non-negative Matrix Factorization on Manifold
    Cai, Deng
    He, Xiaofei
    Wu, Xiaoyun
    Han, Jiawei
    ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2008, : 63 - +
  • [48] Non-negative Matrix Factorization on GPU
    Platos, Jan
    Gajdos, Petr
    Kroemer, Pavel
    Snasel, Vaclav
    NETWORKED DIGITAL TECHNOLOGIES, PT 1, 2010, 87 : 21 - 30
  • [49] Bayesian Non-negative Matrix Factorization
    Schmidt, Mikkel N.
    Winther, Ole
    Hansen, Lars Kai
    INDEPENDENT COMPONENT ANALYSIS AND SIGNAL SEPARATION, PROCEEDINGS, 2009, 5441 : 540 - +
  • [50] On affine non-negative matrix factorization
    Laurberg, Hans
    Hansen, Lars Kai
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PTS 1-3, 2007, : 653 - +