Seizure activity classification based on bimodal Gaussian modeling of the gamma and theta band IMFs of EEG signals

被引:8
作者
Chowdhury, Tanima Tasmin [1 ,2 ]
Fattah, Shaikh Anowarul [1 ]
Shahnaz, Celia [1 ]
机构
[1] Bangladesh Univ Engn & Technol, Dept Elect & Elect Engn, Dhaka, Bangladesh
[2] Univ Asia Pacific, Dept Elect & Elect Engn, Dhaka, Bangladesh
关键词
Bimodal Gaussian distribution; Empirical mode decomposition; Dominant IMFs; Epileptic seizure; Statistical model; REPRESENTATION; OSCILLATIONS;
D O I
10.1016/j.bspc.2020.102273
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this manuscript, EEG signals of seizure and non-seizure activities have been discussed and classified into five groups on the basis of seizure onset, seizure action and brain signal recording location. EEG signals consisting of gamma-band (40-80 Hz) and theta-band (4-8 Hz) oscillations have been captured for performing empirical mode decomposition (EMD). Dominant intrinsic mode functions (IMFs) have been selected from the consequences of EMD and a statistical model is employed upon the IMFs to summarize the information on those. Bimodal Gaussian statistical model has been found most effective to prepare feature set taking the modeling parameters of its probability density function (PDF). Plotting together bimodal Gaussian PDF and empirical PDF for pictorial scrutiny; cumulative distribution function (CDF) in probability-probability (p-p) plot and goodness of fit K-S test result justified the effectiveness of proposed bimodal Gaussian statistical model. Hence, aforementioned statistical modeling parameters have been sent to numerous classifiers and rationalization of goodness of features has been shown through inter-class separability and intra-class compactness parameters. Extensive varieties of simulations are performed using a well-established dataset. The suggested strategy reveals the capability of making higher values of sensitivity, specificity and accuracy compared to that made by some cuffing-edge methods utilizing the same EEG dataset.
引用
收藏
页数:9
相关论文
共 29 条
[1]   Detection of Seizure and Epilepsy Using Higher Order Statistics in the EMD Domain [J].
Alam, S. M. Shafiul ;
Bhuiyan, M. I. H. .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2013, 17 (02) :312-318
[2]   Analysis of Gamma-Band Activity from Human EEG Using Empirical Mode Decomposition [J].
Amo, Carlos ;
de Santiago, Luis ;
Barea, Rafael ;
Lopez-Dorado, Almudena ;
Boquete, Luciano .
SENSORS, 2017, 17 (05)
[3]   Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state [J].
Andrzejak, RG ;
Lehnertz, K ;
Mormann, F ;
Rieke, C ;
David, P ;
Elger, CE .
PHYSICAL REVIEW E, 2001, 64 (06) :8-061907
[4]  
[Anonymous], 2010, EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, DOI DOI 10.1155/2010/853434
[5]   Classification of Seizure and Nonseizure EEG Signals Using Empirical Mode Decomposition [J].
Bajaj, Varun ;
Pachori, Ram Bilas .
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2012, 16 (06) :1135-1142
[6]   High gamma power is phase-locked to theta oscillations in human neocortex [J].
Canolty, R. T. ;
Edwards, E. ;
Dalal, S. S. ;
Soltani, M. ;
Nagarajan, S. S. ;
Kirsch, H. E. ;
Berger, M. S. ;
Barbaro, N. M. ;
Knight, R. T. .
SCIENCE, 2006, 313 (5793) :1626-1628
[7]  
Chowdhury TT, 2017, 2017 IEEE INTERNATIONAL WIE CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (IEEE WIECON-ECE 2017), P180, DOI 10.1109/WIECON-ECE.2017.8468872
[8]   Classification of EEG signals using normal inverse Gaussian parameters in the dual-tree complex wavelet transform domain for seizure detection [J].
Das, Anindya Bijoy ;
Bhuiyan, Mohammed Imamul Hassan ;
Alam, S. M. Shafiul .
SIGNAL IMAGE AND VIDEO PROCESSING, 2016, 10 (02) :259-266
[9]   Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis [J].
Faust, Oliver ;
Acharya, U. Rajendra ;
Adeli, Hojjat ;
Adeli, Amir .
SEIZURE-EUROPEAN JOURNAL OF EPILEPSY, 2015, 26 :56-64
[10]   ILAE Official Report: A practical clinical definition of epilepsy [J].
Fisher, Robert S. ;
Acevedo, Carlos ;
Arzimanoglou, Alexis ;
Bogacz, Alicia ;
Cross, J. Helen ;
Elger, Christian E. ;
Engel, Jerome, Jr. ;
Forsgren, Lars ;
French, Jacqueline A. ;
Glynn, Mike ;
Hesdorffer, Dale C. ;
Lee, B. I. ;
Mathern, Gary W. ;
Moshe, Solomon L. ;
Perucca, Emilio ;
Scheffer, Ingrid E. ;
Tomson, Torbjorn ;
Watanabe, Masako ;
Wiebe, Samuel .
EPILEPSIA, 2014, 55 (04) :475-482