Joint spatial Bayesian modeling for studies combining longitudinal and cross-sectional data

被引:7
作者
Lawson, Andrew B. [1 ]
Carroll, Rachel [1 ]
Castro, Marcia [2 ]
机构
[1] Med Univ S Carolina, Dept Publ Hlth, Charleston, SC 29425 USA
[2] Harvard Univ, Sch Publ Hlth, Dept Global Hlth & Populat, Boston, MA 02115 USA
基金
英国惠康基金; 比尔及梅琳达.盖茨基金会;
关键词
Intervention; malaria; Bayesian; integrated Laplace approximation; joint model; longitudinal data; spatial; DAR-ES-SALAAM; MALARIA; PROGRAM;
D O I
10.1177/0962280214527383
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Design for intervention studies may combine longitudinal data collected from sampled locations over several survey rounds and cross-sectional data from other locations in the study area. In this case, modeling the impact of the intervention requires an approach that can accommodate both types of data, accounting for the dependence between individuals followed up over time. Inadequate modeling can mask intervention effects, with serious implications for policy making. In this paper we use data from a large-scale larviciding intervention for malaria control implemented in Dar es Salaam, United Republic of Tanzania, collected over a period of almost 5 years. We apply a longitudinal Bayesian spatial model to the Dar es Salaam data, combining follow-up and cross-sectional data, treating the correlation in longitudinal observations separately, and controlling for potential confounders. An innovative feature of this modeling is the use of Ornstein-Uhlenbeck process to model random time effects. We contrast the results with other Bayesian modeling formulations, including cross-sectional approaches that consider individual-level random effects to account for subjects followed up in two or more surveys. The longitudinal modeling approach indicates that the intervention significantly reduced the prevalence of malaria infection in Dar es Salaam by 20% whereas the joint model did not suggest significance within the results. Our results suggest that the longitudinal model is to be preferred when longitudinal information is available at the individual level.
引用
收藏
页码:611 / 624
页数:14
相关论文
共 18 条
[1]  
Besag J, 1991, ANN I STAT MATH, V43, P59
[2]   Spatial and spatio-temporal models with R-INLA [J].
Blangiardo, Marta ;
Cameletti, Michela ;
Baio, Gianluca ;
Rue, Havard .
SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, 2013, 4 :33-49
[3]   The Importance of Drains for the Larval Development of Lymphatic Filariasis and Malaria Vectors in Dar es Salaam, United Republic of Tanzania [J].
Castro, Marcia C. ;
Kanamori, Shogo ;
Kannady, Khadija ;
Mkude, Sigsbert ;
Killeen, Gerry F. ;
Fillinger, Ulrike .
PLOS NEGLECTED TROPICAL DISEASES, 2010, 4 (05)
[4]   Participatory mapping of target areas to enable operational larval source management to suppress malaria vector mosquitoes in Dar es Salaam, Tanzania [J].
Dongus, Stefan ;
Nyika, Dickson ;
Kannady, Khadija ;
Mtasiwa, Deo ;
Mshinda, Hassan ;
Fillinger, Ulrike ;
Drescher, Axel W. ;
Tanner, Marcel ;
Castro, Marcia C. ;
Killeen, Gerry F. .
INTERNATIONAL JOURNAL OF HEALTH GEOGRAPHICS, 2007, 6 (1)
[5]   A tool box for operational mosquito larval control: preliminary results and early lessons from the Urban Malaria Control Programme in Dar es Salaam, Tanzania [J].
Fillinger, Ulrike ;
Kannady, Khadija ;
William, George ;
Vanek, Michael J. ;
Dongus, Stefan ;
Nyika, Dickson ;
Geissbuehler, Yvonne ;
Chaki, Prosper P. ;
Govella, Nico J. ;
Mathenge, Evan M. ;
Singer, Burton H. ;
Mshinda, Hassan ;
Lindsay, Steven W. ;
Tanner, Marcel ;
Mtasiwa, Deo ;
de Castro, Marcia C. ;
Killeen, Gerry F. .
MALARIA JOURNAL, 2008, 7 (1)
[6]   Estimating wealth effects without expenditure data - Or tears: An application to educational enrollments in states of India [J].
Filmer, D ;
Pritchett, LH .
DEMOGRAPHY, 2001, 38 (01) :115-132
[7]  
Gamerman Dani, 2006, Texts in Statistical Science
[8]   Microbial Larvicide Application by a Large-Scale, Community-Based Program Reduces Malaria Infection Prevalence in Urban Dar Es Salaam, Tanzania [J].
Geissbuehler, Yvonne ;
Kannady, Khadija ;
Chaki, Prosper Pius ;
Emidi, Basiliana ;
Govella, Nicodem James ;
Mayagaya, Valeliana ;
Kiama, Michael ;
Mtasiwa, Deo ;
Mshinda, Hassan ;
Lindsay, Steven William ;
Tanner, Marcel ;
Fillinger, Ulrike ;
de Castro, Marcia Caldas ;
Killeen, Gerry Francis .
PLOS ONE, 2009, 4 (03)
[9]  
Guttorp P., 1995, Stochastic Modeling of Scientific Data, V1st ed
[10]  
Knorr-Held L, 2000, STAT MED, V19, P2555, DOI 10.1002/1097-0258(20000915/30)19:17/18<2555::AID-SIM587>3.0.CO