Thermal transport in monolayer graphene oxide: Atomistic insights into phonon engineering through surface chemistry

被引:75
作者
Lin, Shangchao [1 ]
Buehler, Markus J. [1 ]
机构
[1] MIT, Dept Civil & Environm Engn, LAMM, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
GRAIN-BOUNDARIES; CONDUCTIVITY; SIMULATIONS; NANORIBBONS; COMPOSITE;
D O I
10.1016/j.carbon.2014.05.038
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Thermal transport in monolayer graphene oxide (GO) with randomized surface epoxy and hydroxyl groups, at various degrees of oxidation (0:C ratio), is investigated using non-equilibrium molecular dynamics simulations. We find that the in-plane thermal conductivity of finite sized pristine graphene or GO (5-50 nm in simulation) increases with length due to reduced phonon-boundary scattering. The intrinsic in-plane thermal conductivity and phonon mean free path of infinite pristine graphene or GO, are estimated based on the kinetic theory of phonon transport. We find that the thermal conductivity drops sharply to 17% of the pristine graphene value for a 1% O:C ratio, and to 1.5% for a typical GO with 20% O:C ratio, suggesting that typical GO is not a very good heat conductor compared to pristine graphene. Surface oxidation suppresses the density of state of the phonon mode due to C-C bonds (the G peak), reducing the phonon specific heat of this mode and hence, overall thermal conductivity. Phonon-defect scattering at the surface oxidized groups reduces the intrinsic mean free path of GO, also contributing to the reduction. Our results characterizes thermal transport in GO and offer insights into surface chemistry-mediated thermal transport in other 2D materials. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:351 / 359
页数:9
相关论文
共 53 条
[1]   Thermal transport across Twin Grain Boundaries in Polycrystalline Graphene from Nonequilibrium Molecular Dynamics Simulations [J].
Bagri, Akbar ;
Kim, Sang-Pil ;
Ruoff, Rodney S. ;
Shenoy, Vivek B. .
NANO LETTERS, 2011, 11 (09) :3917-3921
[2]  
Bagri A, 2010, NAT CHEM, V2, P581, DOI [10.1038/nchem.686, 10.1038/NCHEM.686]
[3]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[4]   Phononics in low-dimensional materials [J].
Balandin, Alexander A. ;
Nika, Denis L. .
MATERIALS TODAY, 2012, 15 (06) :266-275
[5]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[6]   A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons [J].
Brenner, DW ;
Shenderova, OA ;
Harrison, JA ;
Stuart, SJ ;
Ni, B ;
Sinnott, SB .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (04) :783-802
[7]   Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications [J].
Chen, Da ;
Feng, Hongbin ;
Li, Jinghong .
CHEMICAL REVIEWS, 2012, 112 (11) :6027-6053
[8]  
Chen G., 2005, PAPPAL SER MECH ENG
[9]   ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation [J].
Chenoweth, Kimberly ;
van Duin, Adri C. T. ;
Goddard, William A., III .
JOURNAL OF PHYSICAL CHEMISTRY A, 2008, 112 (05) :1040-1053
[10]   Influence of hydrogen functionalization on thermal conductivity of graphene: Nonequilibrium molecular dynamics simulations [J].
Chien, Shih-Kai ;
Yang, Yue-Tzu ;
Chen, Cha'o-Kuang .
APPLIED PHYSICS LETTERS, 2011, 98 (03)