How Dihalogens Catalyze Michael Addition Reactions

被引:86
|
作者
Hamlin, Trevor A. [1 ]
Fernandez, Israel [2 ,3 ]
Bickelhaupt, F. Matthias [1 ,4 ]
机构
[1] Vrije Univ Amsterdam, ACMM, Dept Theoret Chem, De Boelelaan 1083, NL-1081 HV Amsterdam, Netherlands
[2] Univ Complutense Madrid, Fac Ciencias Quim, Dept Quim Inorgan 1, E-28040 Madrid, Spain
[3] Univ Complutense Madrid, Fac Ciencias Quim, Ctr Innovac Quim Avanzada ORFEO CINQA, E-28040 Madrid, Spain
[4] Radboud Univ Nijmegen, IMM, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands
关键词
activation strain model; density functional calculations; halogen bonding; Michael addition; Pauli repulsion; reactivity; MOLECULAR-ORBITAL THEORY; ACTIVATION STRAIN MODEL; IODINE; REACTIVITY; MECHANISM; BOND; REPULSION;
D O I
10.1002/anie.201903196
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We have quantum chemically analyzed the catalytic effect of dihalogen molecules (X-2=F-2, Cl-2, Br-2, and I-2) on the aza-Michael addition of pyrrolidine and methyl acrylate using relativistic density functional theory and coupled-cluster theory. Our state-of-the-art computations reveal that activation barriers systematically decrease as one goes to heavier dihalogens, from 9.4kcalmol(-1) for F-2 to 5.7kcalmol(-1) for I-2. Activation strain and bonding analyses identify an unexpected physical factor that controls the computed reactivity trends, namely, Pauli repulsion between the nucleophile and Michael acceptor. Thus, dihalogens do not accelerate Michael additions by the commonly accepted mechanism of an enhanced donor-acceptor [HOMO(nucleophile)-LUMO(Michael acceptor)] interaction, but instead through a diminished Pauli repulsion between the lone-pair of the nucleophile and the Michael acceptor's pi-electron system.
引用
收藏
页码:8922 / 8926
页数:5
相关论文
共 50 条
  • [31] "On-Water" Michael-Type Addition Reactions Promoted by PhSeZnCl
    Battistelli, Benedetta
    Lorenzo, Testaferri
    Tiecco, Marcello
    Santi, Claudio
    EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, 2011, 2011 (10) : 1848 - 1851
  • [32] Michael addition, mechanistic aspects.
    de Mattos, MC
    Marzorati, L
    QUIMICA NOVA, 1999, 22 (05): : 710 - 714
  • [33] A Bioinspired ZnII/FeIII Heterobimetallic Catalyst for Thia-Michael Addition
    Lee, Way-Zen
    Wang, Tzu-Li
    Chang, Hao-Ching
    Chen, Yi-Ting
    Kuo, Ting-Shen
    ORGANOMETALLICS, 2012, 31 (11) : 4106 - 4109
  • [34] Synergistic Catalysis of Tandem Michael Addition/Enantioselective Protonation Reactions by an Artificial Enzyme
    Zhou, Zhi
    Roelfes, Gerard
    ACS CATALYSIS, 2021, 11 (15): : 9366 - 9369
  • [35] Innovative catalysis in Michael addition reactions for C-X bond formation
    Malkar, Radhika S.
    Jadhav, Amarsinh L.
    Yadav, Ganapati D.
    MOLECULAR CATALYSIS, 2020, 485
  • [36] Carbocations as Lewis Acid Catalysts in Diels-Alder and Michael Addition Reactions
    Bah, Juho
    Franzen, Johan
    CHEMISTRY-A EUROPEAN JOURNAL, 2014, 20 (04) : 1066 - 1072
  • [37] Recent Developments in Highly Stereoselective Michael Addition Reactions Catalyzed by Metal Complexes
    Reznikov, Alexander N.
    Klimochkin, Yuri N.
    SYNTHESIS-STUTTGART, 2020, 52 (06): : 781 - 795
  • [38] In Situ Preparation of Chiral Bifunctional Catalysts and Their Application to Asymmetric Michael Addition Reactions
    Moteki, Shin A.
    Kirira, Peter Gakio
    Arimitsu, Satoru
    Maruoka, Keiji
    ASIAN JOURNAL OF ORGANIC CHEMISTRY, 2012, 1 (01) : 26 - 29
  • [39] Genomic salmon testes DNA as a catalyst for Michael reactions in water
    De Rosa, Margherita
    Di Marino, Sara
    D'Ursi, Anna Maria
    Strianese, Maria
    Soriente, Annunziata
    TETRAHEDRON, 2012, 68 (14) : 3086 - 3091
  • [40] Enantioselective Michael addition reactions in water using a DNA-based catalyst
    Li, Yinghao
    Wang, Changhao
    Jia, Guoqing
    Lu, Shengmei
    Li, Can
    TETRAHEDRON, 2013, 69 (32) : 6585 - 6590