How Dihalogens Catalyze Michael Addition Reactions

被引:86
|
作者
Hamlin, Trevor A. [1 ]
Fernandez, Israel [2 ,3 ]
Bickelhaupt, F. Matthias [1 ,4 ]
机构
[1] Vrije Univ Amsterdam, ACMM, Dept Theoret Chem, De Boelelaan 1083, NL-1081 HV Amsterdam, Netherlands
[2] Univ Complutense Madrid, Fac Ciencias Quim, Dept Quim Inorgan 1, E-28040 Madrid, Spain
[3] Univ Complutense Madrid, Fac Ciencias Quim, Ctr Innovac Quim Avanzada ORFEO CINQA, E-28040 Madrid, Spain
[4] Radboud Univ Nijmegen, IMM, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands
关键词
activation strain model; density functional calculations; halogen bonding; Michael addition; Pauli repulsion; reactivity; MOLECULAR-ORBITAL THEORY; ACTIVATION STRAIN MODEL; IODINE; REACTIVITY; MECHANISM; BOND; REPULSION;
D O I
10.1002/anie.201903196
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We have quantum chemically analyzed the catalytic effect of dihalogen molecules (X-2=F-2, Cl-2, Br-2, and I-2) on the aza-Michael addition of pyrrolidine and methyl acrylate using relativistic density functional theory and coupled-cluster theory. Our state-of-the-art computations reveal that activation barriers systematically decrease as one goes to heavier dihalogens, from 9.4kcalmol(-1) for F-2 to 5.7kcalmol(-1) for I-2. Activation strain and bonding analyses identify an unexpected physical factor that controls the computed reactivity trends, namely, Pauli repulsion between the nucleophile and Michael acceptor. Thus, dihalogens do not accelerate Michael additions by the commonly accepted mechanism of an enhanced donor-acceptor [HOMO(nucleophile)-LUMO(Michael acceptor)] interaction, but instead through a diminished Pauli repulsion between the lone-pair of the nucleophile and the Michael acceptor's pi-electron system.
引用
收藏
页码:8922 / 8926
页数:5
相关论文
共 50 条
  • [1] How Lewis Acids Catalyze Diels-Alder Reactions
    Vermeeren, Pascal
    Hamlin, Trevor A.
    Fernandez, Israel
    Bickelhaupt, F. Matthias
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (15) : 6201 - 6206
  • [2] How Lewis Acids Catalyze Ene Reactions
    Tiekink, Eveline H.
    Vermeeren, Pascal
    Bickelhaupt, F. Matthias
    Hamlin, Trevor A.
    EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, 2021, 2021 (37) : 5275 - 5283
  • [3] How Alkali Cations Catalyze Aromatic Diels-Alder Reactions
    Vermeeren, Pascal
    Brinkhuis, Francine
    Hamlin, Trevor A.
    Bickelhaupt, F. Matthias
    CHEMISTRY-AN ASIAN JOURNAL, 2020, 15 (07) : 1167 - 1174
  • [4] How Bases Catalyze Diels-Alder Reactions
    Yu, Song
    Tiekink, Eveline H. H.
    Vermeeren, Pascal
    Bickelhaupt, F. Matthias
    Hamlin, Trevor A. A.
    CHEMISTRY-A EUROPEAN JOURNAL, 2023, 29 (07)
  • [5] Catalytic, enatioselective Michael addition reactions
    Jha, SC
    Joshi, NN
    ARKIVOC, 2002, : 167 - 196
  • [6] Supported iron catalysts for Michael addition reactions
    Ye, Rong
    Faucher, Franco F.
    Somorjai, Gabor A.
    MOLECULAR CATALYSIS, 2018, 447 : 65 - 71
  • [7] The Role of Noninnocent Solvent Molecules in Organocatalyzed Asymmetric Michael Addition Reactions
    Patil, Mahendra P.
    Sunoj, Raghavan B.
    CHEMISTRY-A EUROPEAN JOURNAL, 2008, 14 (33) : 10472 - 10485
  • [8] How Ionization Catalyzes Diels-Alder Reactions
    Vermeeren, Pascal
    Hamlin, Trevor A.
    Bickelhaupt, F. Matthias
    CHEMISTRY-A EUROPEAN JOURNAL, 2022, 28 (40) : e202201620
  • [9] Michael addition reactions in macromolecular design for emerging technologies
    Mather, Brian D.
    Viswanathan, Kalpana
    Miller, Kevin M.
    Long, Timothy E.
    PROGRESS IN POLYMER SCIENCE, 2006, 31 (05) : 487 - 531
  • [10] A Photochemical Strategy towards Michael Addition Reactions of Cyclopropenes
    Hussain, Yaseen
    Prasanna, R.
    Empel, Claire
    Sharma, Deepak
    Kloene, Lennard
    Zhu, W. Felix
    Kaiser, Astrid
    Weizel, Lilia
    Proschak, Ewgenij
    Koenigs, Rene M.
    Chauhan, Pankaj
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025, 64 (08)