TWO-SCALE HOMOGENIZATION OF NONLINEAR REACTION-DIFFUSION SYSTEMS WITH SLOW DIFFUSION

被引:21
|
作者
Mielke, Alexander [1 ,2 ]
Reichelt, Sina [1 ]
Thomas, Marita [1 ]
机构
[1] Weierstrass Inst, D-10117 Berlin, Germany
[2] Humboldt Univ, Inst Math, D-12489 Berlin, Germany
关键词
Two-scale convergence; folding and unfolding; coupled reaction-diffusion equations; nonlinear reaction; degenerating diffusion; Gronwall estimate; PRANDTL-REUSS MODEL; PERIODIC HOMOGENIZATION; PARABOLIC PROBLEMS; CONVERGENCE;
D O I
10.3934/nhm.2014.9.353
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive a two-scale homogenization limit for reaction-diffusion systems where for some species the diffusion length is of order 1 whereas for the other species the diffusion length is of the order of the periodic microstructure. Thus, in the limit the latter species will display diffusion only on the microscale but not on the macroscale. Because of this missing compactness, the nonlinear coupling through the reaction terms cannot be homogenized but needs to be treated on the two-scale level. In particular, we have to develop new error estimates to derive strong convergence results for passing to the limit.
引用
收藏
页码:353 / 382
页数:30
相关论文
共 50 条
  • [31] Characterization of Two-Scale Gradient Young Measures and Application to Homogenization
    Jean-François Babadjian
    Margarida Baía
    Pedro M. Santos
    Applied Mathematics and Optimization, 2008, 57 : 69 - 97
  • [32] SLOW MOTION OF PARTICLE SYSTEMS AS A LIMIT OF A REACTION-DIFFUSION EQUATION WITH HALF-LAPLACIAN IN DIMENSION ONE
    del Mar Gonzalez, Maria
    Monneau, Regis
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (04) : 1255 - 1286
  • [33] Two-scale, non-local diffusion in homogenised heterogeneous media
    Ramirez-Torres, Ariel
    Penta, Raimondo
    Grillo, Alfio
    ARCHIVE OF APPLIED MECHANICS, 2022, 92 (02) : 559 - 595
  • [34] Reaction-diffusion in viscoelastic materials
    Ferreira, J. A.
    de Oliveira, P.
    Silva, P. M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (15) : 3783 - 3795
  • [35] HOMOGENIZATION OF A SYSTEM OF ELASTIC AND REACTION-DIFFUSION EQUATIONS MODELLING PLANT CELL WALL BIOMECHANICS
    Ptashnyk, Mariya
    Seguin, Brian
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (02): : 593 - 631
  • [36] Homogenization of degenerate cross-diffusion systems
    Jungel, Ansgar
    Ptashnyk, Mariya
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (09) : 5543 - 5575
  • [37] A two-level linearized compact ADI scheme for two-dimensional nonlinear reaction-diffusion equations
    Wu, Fengyan
    Cheng, Xiujun
    Li, Dongfang
    Duan, Jinqiao
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (08) : 2835 - 2850
  • [38] Convergence to traveling waves in reaction-diffusion systems with equal diffusivities
    Guo, Jong-Shenq
    Shimojo, Masahiko
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 375 : 156 - 171
  • [39] Preserving invariance properties of reaction-diffusion systems on stationary surfaces
    Frittelli, Massimo
    Madzvamuse, Anotida
    Sgura, Ivonne
    Venkataraman, Chandrasekhar
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (01) : 235 - 270
  • [40] Singularly Perturbed Reaction-Diffusion Problems as First order systems
    Franz, Sebastian
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 89 (02)