Dynamic heterogeneity and conditional statistics of non-Gaussian temperature fluctuations in turbulent thermal convection

被引:12
作者
He, Xiaozhou [1 ]
Wang, Yin [2 ]
Tong, Penger [2 ]
机构
[1] Harbin Inst Technol, Sch Mech Engn & Automat, Shenzhen 518055, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
RAYLEIGH-BENARD CONVECTION; VELOCITY FLUCTUATIONS; NUMBERS; SCALAR; FLOW; CELL; GAS;
D O I
10.1103/PhysRevFluids.3.052401
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Non-Gaussian fluctuations with an exponential tail in their probability density function (PDF) are often observed in nonequilibrium steady states (NESSs) and one does not understand why they appear so often. Turbulent Rayleigh-Benard convection (RBC) is an example of such a NESS, in which the measured PDF P(delta T) of temperature fluctuations ST in the central region of the flow has a long exponential tail. Here we show that because of the dynamic heterogeneity in RBC, the exponential PDF is generated by a convolution of a set of dynamics modes conditioned on a constant local thermal dissipation rate e. The conditional PDF G(delta T epsilon) of delta T under a constant epsilon is found to be of Gaussian form and its variance sigma(2)(T) for different values of epsilon follows an exponential distribution. The convolution of the two distribution functions gives rise to the exponential PDF P(delta T). This work thus provides a physical mechanism of the observed exponential distribution of delta T in RBC and also sheds light on the origin of non-Gaussian fluctuations in other NESSs.
引用
收藏
页数:8
相关论文
共 36 条
[1]   Heat transfer and large scale dynamics in turbulent Rayleigh-Benard convection [J].
Ahlers, Guenter ;
Grossmann, Siegfried ;
Lohse, Detlef .
REVIEWS OF MODERN PHYSICS, 2009, 81 (02) :503-537
[2]  
[Anonymous], 2007, Technical Report SUF-PFY/96-01
[3]   One-dimensional Langevin models of fluid particle acceleration in developed turbulence [J].
Aringazin, AK ;
Mazhitov, MI .
PHYSICAL REVIEW E, 2004, 69 (02) :026305-1
[4]   TEMPERATURE AND VELOCITY BOUNDARY-LAYERS IN TURBULENT CONVECTION [J].
BELMONTE, A ;
TILGNER, A ;
LIBCHABER, A .
PHYSICAL REVIEW E, 1994, 50 (01) :269-279
[5]   SCALING OF HARD THERMAL TURBULENCE IN RAYLEIGH-BENARD CONVECTION [J].
CASTAING, B ;
GUNARATNE, G ;
HESLOT, F ;
KADANOFF, L ;
LIBCHABER, A ;
THOMAE, S ;
WU, XZ ;
ZALESKI, S ;
ZANETTI, G .
JOURNAL OF FLUID MECHANICS, 1989, 204 :1-30
[6]   Unusual diffusion in a quasi-two-dimensional granular gas [J].
Chen, Wennan ;
To, Kiwing .
PHYSICAL REVIEW E, 2009, 80 (06)
[7]   Intermittent dissipation of a passive scalar in turbulence [J].
Chertkov, M ;
Falkovich, G ;
Kolokolov, I .
PHYSICAL REVIEW LETTERS, 1998, 80 (10) :2121-2124
[8]   Lagrangian velocity statistics in turbulent flows:: Effects of dissipation -: art. no. 214502 [J].
Chevillard, L ;
Roux, SG ;
Levêque, E ;
Mordant, N ;
Pinton, JF ;
Arneodo, A .
PHYSICAL REVIEW LETTERS, 2003, 91 (21) :1-214502
[9]   New perspectives in turbulent Rayleigh-Benard convection [J].
Chilla, F. ;
Schumacher, J. .
EUROPEAN PHYSICAL JOURNAL E, 2012, 35 (07)
[10]   PROBABILITY DENSITIES OF TURBULENT TEMPERATURE-FLUCTUATIONS [J].
CHING, ESC .
PHYSICAL REVIEW LETTERS, 1993, 70 (03) :283-286