OPTIMAL CONTROL OF PIECEWISE AFFINE SYSTEMS WITH PIECEWISE AFFINE STATE FEEDBACK

被引:5
|
作者
Wu, Changzhi [1 ,2 ]
Teo, Kok Lay [2 ]
Rehbock, Volker [2 ]
机构
[1] Chongqing Normal Univ Shapingba, Dept Math, Chongqing 400047, Peoples R China
[2] Curtin Univ Technol, Dept Math & Stat, Perth, WA 6002, Australia
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Piecewise affine system; State feedback; Optimal control;
D O I
10.3934/jimo.2009.5.737
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we consider a class of optimal control problems involving piecewise affine (PWA) systems with piecewise affine state feedback. We first show that if the piecewise affine state feedback control is assumed to be continuous at the switching boundaries, then the number of switching amongst PWA systems is finite. On this basis, this optimal control problem is transformed into a discrete valued optimal control problem. For this discrete valued optimal control problem, we introduce the time scaling transform to convert it into an equivalent constrained optimal parameter selection problem, for which it can be solved by existing optimal control techniques for optimal parameter selection problems. A numerical example is solved so as to illustrate the proposed method.
引用
收藏
页码:737 / 747
页数:11
相关论文
共 50 条
  • [31] Boundedness and local stability of oscillation in a class of piecewise affine systems
    Wang, Xinyong
    Hetel, Laurentiu
    Lauber, Jimmy
    Tang, Ying
    AUTOMATICA, 2024, 167
  • [32] Piecewise affine approximations for quality modeling and control of perishable foods
    Xin, Jianbin
    Negenborn, Rudy R.
    Lin, Xiao
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2018, 39 (02) : 860 - 872
  • [33] Non-fragile state-feedback control of uncertain piecewise-affine slab systems with input constraints: a convex optimisation approach
    Dadkhah, Navid
    Rodrigues, Luis
    IET CONTROL THEORY AND APPLICATIONS, 2014, 8 (08) : 626 - 632
  • [34] Active fault tolerant control of piecewise affine systems with reference tracking and input constraints
    Gholami, M.
    Cocquempot, V.
    Schioler, H.
    Bak, T.
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2014, 28 (11) : 1240 - 1265
  • [35] Piecewise affine modeling and hybrid optimal control of intelligent vehicle longitudinal dynamics for velocity regulation
    Sun, Xiaoqiang
    Wu, Pengcheng
    Cai, Yingfeng
    Wang, Shaohua
    Chen, Long
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 162
  • [36] Practical optimal state feedback control law for continuous-time switched affine systems with cyclic steady state
    Patino, D.
    Riedinger, P.
    Iung, C.
    INTERNATIONAL JOURNAL OF CONTROL, 2009, 82 (07) : 1357 - 1376
  • [37] Zonotope parameter identification for piecewise affine system
    Jianwang, Hong
    Ramirez-Mendoza, Ricardo A.
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2020, 8 (01) : 232 - 240
  • [38] Model identification of piecewise affine (PWA) systems based on fuzzy cluster
    Pan, Tian-Hong
    Li, Shao-Yuan
    Zidonghua Xuebao/Acta Automatica Sinica, 2007, 33 (03): : 327 - 330
  • [39] Fault recoverability analysis of nonlinear systems: A piecewise affine system approach
    Ren, Wenjing
    Yang, Hao
    Jiang, Bin
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2017, 15 (02) : 547 - 556
  • [40] Piecewise affine systems modelling for optimizing hormone therapy of prostate cancer
    Suzuki, Taiji
    Bruchovsky, Nicholas
    Aihara, Kazuyuki
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 368 (1930): : 5045 - 5059