OPTIMAL CONTROL OF PIECEWISE AFFINE SYSTEMS WITH PIECEWISE AFFINE STATE FEEDBACK

被引:5
|
作者
Wu, Changzhi [1 ,2 ]
Teo, Kok Lay [2 ]
Rehbock, Volker [2 ]
机构
[1] Chongqing Normal Univ Shapingba, Dept Math, Chongqing 400047, Peoples R China
[2] Curtin Univ Technol, Dept Math & Stat, Perth, WA 6002, Australia
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Piecewise affine system; State feedback; Optimal control;
D O I
10.3934/jimo.2009.5.737
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we consider a class of optimal control problems involving piecewise affine (PWA) systems with piecewise affine state feedback. We first show that if the piecewise affine state feedback control is assumed to be continuous at the switching boundaries, then the number of switching amongst PWA systems is finite. On this basis, this optimal control problem is transformed into a discrete valued optimal control problem. For this discrete valued optimal control problem, we introduce the time scaling transform to convert it into an equivalent constrained optimal parameter selection problem, for which it can be solved by existing optimal control techniques for optimal parameter selection problems. A numerical example is solved so as to illustrate the proposed method.
引用
收藏
页码:737 / 747
页数:11
相关论文
共 50 条
  • [31] Construction of Continuous and Piecewise Affine Feedback Stabilizers for Nonlinear Systems
    Steentjes, Tom Robert Vince
    Lazar, Mircea
    Doban, Alina Ionela
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (09) : 4059 - 4068
  • [32] Optimal Sampled Data Control of PWM Systems Using Piecewise Affine Approximations
    Almer, S.
    Mariethoz, S.
    Morari, M.
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 2143 - 2148
  • [33] Robust model predictive control for piecewise affine systems
    Zou, Yuanyuan
    Li, Shaoyuan
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2007, 26 (03) : 393 - 406
  • [34] Reconfiguration in hierarchical control of piecewise-affine systems
    Pasternak, T
    HYBRID SYSTEMS: COMPUTATION AND CONTROL, 2002, 2289 : 364 - 377
  • [35] Mixed-Integer Formulations for Optimal Control of Piecewise-Affine Systems
    Marcucci, Tobia
    Tedrake, Russ
    PROCEEDINGS OF THE 2019 22ND ACM INTERNATIONAL CONFERENCE ON HYBRID SYSTEMS: COMPUTATION AND CONTROL (HSCC '19), 2019, : 230 - 239
  • [36] Trajectory tracking control of bimodal piecewise affine systems
    Sakurama, K
    Sugie, T
    INTERNATIONAL JOURNAL OF CONTROL, 2005, 78 (16) : 1314 - 1326
  • [37] Trajectory tracking control of bimodal piecewise affine systems
    Sakurama, K
    Sugie, T
    Nakano, K
    ACC: Proceedings of the 2005 American Control Conference, Vols 1-7, 2005, : 2799 - 2804
  • [38] Asynchronous Quantized Control of Piecewise-Affine Systems
    Ning, Zepeng
    Feng, Gang
    Yin, Xunyuan
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (01) : 503 - 510
  • [39] Configuration selection for reconfigurable control of piecewise affine systems
    Tabatabaeipour, S. M.
    Gholami, M.
    Bak, T.
    INTERNATIONAL JOURNAL OF CONTROL, 2015, 88 (06) : 1310 - 1323
  • [40] Robust Model Predictive Control for Piecewise Affine Systems
    Yuanyuan Zou
    Shaoyuan Li
    Circuits, Systems & Signal Processing, 2007, 26 : 393 - 406