Hornotopy fixed points for LK (n) (En ∧ X) using the continuous action

被引:19
作者
Davis, Daniel G. [1 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
关键词
D O I
10.1016/j.jpaa.2005.06.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K (n) be the nth Morava K-theory spectrum. Let E-n be the Lubin-Tate spectrum, which plays a central role in understanding L-K(n)(S-0), the K(n)-local sphere. For any spectrum X, define E-V(X) to be L-K(n)(E-n boolean AND X). Let G be a closed subgroup of the profinite group G(n), the group of ring spectrum automorphisms of E-n in the stable homotopy category. We show that E-V(X) is a continuous G-spectrum, with homotopy fixed point spectrum (E-V(X))(hG). Also, we construct a descent spectral sequence with abutment pi(*) ((E-V(X))(hG)). (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:322 / 354
页数:33
相关论文
共 33 条
[1]  
Bousfield A. K., 1978, Geometric applications of homotopy theory, V658, P80, DOI DOI 10.1007/BFB0068711.5.0.2,5
[2]  
Devinatz ES, 1998, FIELDS INST COMMUN, V19, P73
[3]   Morava modules and Brown-Comenetz duality [J].
Devinatz, ES .
AMERICAN JOURNAL OF MATHEMATICS, 1997, 119 (04) :741-770
[4]   Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups [J].
Devinatz, ES ;
Hopkins, MJ .
TOPOLOGY, 2004, 43 (01) :1-47
[5]  
Geisser Thomas, 1999, P S PURE MATH, V67, P41
[6]  
Goerss P.G., 2004, Structured Ring Spectra, P151, DOI [10.1017/CBO9780511529955.009, DOI 10.1017/CBO9780511529955.009]
[7]   Localization theories for simplicial presheaves [J].
Goerss, PG ;
Jardine, JF .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1998, 50 (05) :1048-1089
[8]  
HOPKINS MJ, 1994, TOPOLOGY REPRESENTAT, P89
[9]   Symmetric spectra [J].
Hovey, M ;
Shipley, B ;
Smith, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 13 (01) :149-208
[10]  
Hovey M, 2004, Homology Homotopy Appl., V6, P201