On the Mints Hierarchy in First-Order Intuitionistic Logic

被引:7
作者
Schubert, Aleksy [1 ]
Urzyczyn, Pawel [1 ]
Zdanowski, Konrad [2 ]
机构
[1] Univ Warsaw, Inst Informat, PL-02097 Warsaw, Poland
[2] Cardinal Stefan Wyszynski Univ Warsaw, PL-01815 Warsaw, Poland
来源
FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES (FOSSACS 2015) | 2015年 / 9034卷
关键词
INTERSECTION TYPES; PREDICATE LOGIC; DECIDABILITY; INHABITATION;
D O I
10.1007/978-3-662-46678-0_29
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We study the decidability and complexity of fragments of intuitionistic first-order logic over (for all, ->) determined by the alternation of positive and negative occurrences of quantifiers (Mints hierarchy). We prove that fragments Pi(2) and Sigma(2) are undecidable and that Sigma(1) is EXPSPACE-complete.
引用
收藏
页码:451 / 465
页数:15
相关论文
共 23 条
[1]  
[Anonymous], 2012, The Coq proof assistant reference manual
[2]  
[Anonymous], 1997, Perspectives in Mathematical Logic
[3]  
Bonevac Daniel, 2012, HDB HIST LOGIC, V11
[4]  
Bove A, 2009, LECT NOTES COMPUT SC, V5674, P73, DOI 10.1007/978-3-642-03359-9_6
[5]  
Burr W., 1999, LECT NOTES LOGIC, V17, P51
[6]  
Church A., 1944, INTRO MATH LOGIC
[7]   Decidability and complexity of simultaneous rigid E-unification with one variable and related results [J].
Degtyarev, A ;
Gurevich, Y ;
Narendran, P ;
Veanes, M ;
Voronkov, A .
THEORETICAL COMPUTER SCIENCE, 2000, 243 (1-2) :167-184
[8]   Eigenvariables, bracketing and the decidability of positive minimal predicate logic [J].
Dowek, Gilles ;
Jiang, Ying .
THEORETICAL COMPUTER SCIENCE, 2006, 360 (1-3) :193-208
[9]  
FITTING M, 1981, FUNDAMENTALS GEN REC
[10]   Syntactic Preservation Theorems for Intuitionistic Predicate Logic [J].
Fleischmann, Jonathan .
NOTRE DAME JOURNAL OF FORMAL LOGIC, 2010, 51 (02) :225-245