High quality factor nanocrystalline diamond micromechanical resonators limited by thermoelastic damping

被引:38
作者
Najar, Hadi [1 ]
Chan, Mei-Lin [2 ]
Yang, Hsueh-An [3 ]
Lin, Liwei [3 ]
Cahill, David G. [4 ]
Horsley, David A. [1 ,2 ]
机构
[1] Univ Calif Davis, Dept Elect & Comp Engn, Davis, CA 95616 USA
[2] Univ Calif Davis, Dept Mech & Aerosp Engn, Davis, CA 95616 USA
[3] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
[4] Univ Illinois, Dept Mat Sci & Engn, Mat Res Lab, Urbana, IL 61801 USA
关键词
NANOMECHANICAL RESONATORS; THERMAL-CONDUCTIVITY; RAMAN-SPECTROSCOPY; INTERNAL-FRICTION; BEAM RESONATORS; THIN-FILMS; DISSIPATION; CANTILEVERS; OSCILLATOR; SCATTERING;
D O I
10.1063/1.4871803
中图分类号
O59 [应用物理学];
学科分类号
摘要
We demonstrate high quality factor thin-film nanocrystalline diamond micromechanical resonators with quality factors limited by thermoelastic damping. Cantilevers, single-anchored and double-anchored double-ended tuning forks, were fabricated from 2.5 mu m thick in-situ boron doped nanocrystalline diamond films deposited using hot filament chemical vapor deposition. Thermal conductivity measured by time-domain thermoreflectance resulted in 24 +/- 3 W m(-1) K-1 for heat transport through the thickness of the diamond film. The resonant frequencies of the fabricated resonators were 46 kHz-8MHz and showed a maximum measured Q approximate to 86 000 at f(n) = 46.849 kHz. The measured Q-factors are shown to be in good agreement with the limit imposed by thermoelastic dissipation calculated using the measured thermal conductivity. The mechanical properties extracted from resonant frequency measurements indicate a Young's elastic modulus of approximate to 788 GPa, close to that of microcrystalline diamond. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 45 条
[1]   Mechanical stiffness and dissipation in ultrananocrystalline diamond microresonators [J].
Adiga, V. P. ;
Sumant, A. V. ;
Suresh, S. ;
Gudeman, C. ;
Auciello, O. ;
Carlisle, J. A. ;
Carpick, R. W. .
PHYSICAL REVIEW B, 2009, 79 (24)
[2]   Thermomechanical stability of ultrananocrystalline diamond [J].
Adiga, Vivekananda P. ;
Suresh, Sampath ;
Datta, Arindom ;
Carlisle, John A. ;
Carpick, Robert W. .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (05)
[3]  
Akgul M., 2011, Proc. Joint IEEE Int. Frequency Control Symp. and European Frequency and Time Forum, P1, DOI DOI 10.1109/FCS.2011.5977901
[4]   Are diamonds a MEMS' best friend? [J].
Auciello, Orlando ;
Pacheco, Sergio ;
Sumant, Anirudha V. ;
Gudeman, Chris ;
Sampath, Suresh ;
Datta, Arindom ;
Carpick, Robert W. ;
Adiga, Vivekananda P. ;
Zurcher, Peter ;
Ma, Zhenqiang ;
Yuan, Hao-Chih ;
Carlisle, John A. ;
Kabius, Bernd ;
Hiller, Jon ;
Srinivasan, Sudarsan .
IEEE MICROWAVE MAGAZINE, 2007, 8 (06) :61-75
[5]   Analysis of heat flow in layered structures for time-domain thermoreflectance [J].
Cahill, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (12) :5119-5122
[6]   Diamond films - Precious biosensors [J].
Carlisle, JA .
NATURE MATERIALS, 2004, 3 (10) :668-669
[7]   High-Q UHF micromechanical radial-contour mode disk resonators [J].
Clark, JR ;
Hsu, WT ;
Abdelmoneum, MA ;
Nguyen, CTC .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2005, 14 (06) :1298-1310
[8]   Phonon-tunnelling dissipation in mechanical resonators [J].
Cole, Garrett D. ;
Wilson-Rae, Ignacio ;
Werbach, Katharina ;
Vanner, Michael R. ;
Aspelmeyer, Markus .
NATURE COMMUNICATIONS, 2011, 2
[9]   Nanoelectromechanical systems [J].
Ekinci, KL ;
Roukes, ML .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2005, 76 (06)
[10]   Origin of the 1150-cm-1 Raman mode in nanocrystalline diamond -: art. no. 121405 [J].
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2001, 63 (12)