The endomorphism kernel property in finite distributive lattices and de Morgan algebras

被引:21
作者
Blyth, TS
Fang, J
Silva, HJ
机构
[1] Univ St Andrews, Math Inst, St Andrews KY16 9SS, Fife, Scotland
[2] Univ Los Andes, Dept Matemat, Bogota, Colombia
[3] Univ Nova Lisboa, FCT, Dept Matemat, Lisbon, Portugal
关键词
endomorphism kernel; de Morgan algebra; Kleene algebra;
D O I
10.1081/AGB-120037216
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An algebra A has the endomorphism kernel property if every congruence on A different from the universal congruence is the kernel of an endomorphism on A. We first consider this property when A is a finite distributive lattice, and show that it holds if and only if A is a cartesian product of chains. We then consider the case where A is an Ockham algebra, and describe in particular the structure of the finite de Morgan algebras that have this property.
引用
收藏
页码:2225 / 2242
页数:18
相关论文
共 9 条