Excellent Reliability and High-Speed Antiferroelectric HfZrO2 Tunnel Junction by a High-Pressure Annealing Process and Built-In Bias Engineering

被引:51
作者
Goh, Youngin [1 ]
Hwang, Junghyeon [1 ]
Jeon, Sanghun [1 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Sch Elect Engn, Daehak Ro 291, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
antiferroelectric; HfZrO; tunnel junction; nonvolatile; reliability; ELECTRORESISTANCE;
D O I
10.1021/acsami.0c15091
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Hafnia-based ferroelectric tunnel junctions (FTJs) have great potential for use in logic in nonvolatile memory because of their complementary metal-oxide-semiconductor process compatibility, low power consumption, high scalability, and nondestructive readout. However, typically, ferroelectrics have a depolarization field, resulting in poor endurance owing to the early dielectric breakdown. Herein, an outstandingly reliable and high-speed antiferroelectric HfZrO tunnel junction (AFTJ) is probed to understand whether it is a promising candidate for next-generation nonvolatile memory applications. High-reliability AFTJ can be explained by less charge injection due to the low depolarized field. The formation of two stable nonvolatile states, even with antiferroelectric materials, is possible if asymmetric work function electrodes and fixed oxide charges are employed, generating a built-in bias and shifting the polarization-voltage curve. In addition, via high-pressure annealing, a critical voltage that determines the transition from the t-phase to the o-phase is effectively reduced (22%). The AFTJ shows a higher endurance property (>10(9) cycles) and faster switching speed (<30 ns) than FTJ. Hence, it is proposed that with the help of internal bias modulation and high-pressure annealing, AFTJs can be employed in next-generation memory devices.
引用
收藏
页码:57539 / 57546
页数:8
相关论文
共 43 条
[1]   Silicon-doped hafnium oxide anti-ferroelectric thin films for energy storage [J].
Ali, Faizan ;
Liu, Xiaohua ;
Zhou, Dayu ;
Yang, Xirui ;
Xu, Jin ;
Schenk, Tony ;
Mueller, Johannes ;
Schroeder, Uwe ;
Cao, Fei ;
Dong, Xianlin .
JOURNAL OF APPLIED PHYSICS, 2017, 122 (14)
[2]   Tunneling electroresistance effect in a Pt/Hf0.5Zr0.5O2/Pt structure [J].
Ambriz-Vargas, F. ;
Kolhatkar, G. ;
Thomas, R. ;
Nouar, R. ;
Sarkissian, A. ;
Gomez-Yanez, C. ;
Gauthier, M. A. ;
Ruediger, A. .
APPLIED PHYSICS LETTERS, 2017, 110 (09)
[3]   A Complementary Metal Oxide Semiconductor Process-Compatible Ferroelectric Tunnel Junction [J].
Ambriz-Vargas, Fabian ;
Kolhatkar, Gitanjali ;
Broyer, Maxime ;
Hadj-Youssef, Azza ;
Nouar, Rafik ;
Sarkissian, Andranik ;
Thomas, Reji ;
Gomez-Yanez, Carlos ;
Gauthier, Marc A. ;
Ruediger, Andreas .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (15) :13262-13268
[4]   Antiferroelectric Tunnel Junctions [J].
Apachitei, Geanina ;
Peters, Jonathan J. P. ;
Sanchez, Ana M. ;
Kim, Dong Jik ;
Alexe, Marin .
ADVANCED ELECTRONIC MATERIALS, 2017, 3 (07)
[5]  
Apostolov A. T., 2020, ADV MAT PHYS CHEM, V10, P27
[6]   Ferroelectricity in hafnium oxide thin films [J].
Boescke, T. S. ;
Mueller, J. ;
Braeuhaus, D. ;
Schroeder, U. ;
Boettger, U. .
APPLIED PHYSICS LETTERS, 2011, 99 (10)
[7]  
Chanthbouala A, 2012, NAT MATER, V11, P860, DOI [10.1038/NMAT3415, 10.1038/nmat3415]
[8]   Anti-Ferroelectric Ceramics for High Energy Density Capacitors [J].
Chauhan, Aditya ;
Patel, Satyanarayan ;
Vaish, Rahul ;
Bowen, Chris R. .
MATERIALS, 2015, 8 (12) :8009-8031
[9]   Ultra-low power Hf0.5Zr0.5O2 based ferroelectric tunnel junction synapses for hardware neural network applications [J].
Chen, Lin ;
Wang, Tian-Yu ;
Dai, Ya-Wei ;
Cha, Ming-Yang ;
Zhu, Hao ;
Sun, Qing-Qing ;
Ding, Shi-Jin ;
Zhou, Peng ;
Chua, Leon ;
Zhang, David Wei .
NANOSCALE, 2018, 10 (33) :15826-15833
[10]   High-k HfxZr1-xO2 Ferroelectric Insulator by Utilizing High Pressure Anneal [J].
Das, Dipjyoti ;
Jeon, Sanghun .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2020, 67 (06) :2489-2494