Nonlinear instability of elementary stratified flows at large Richardson number

被引:5
作者
Majda, AJ [1 ]
Shefter, MG [1 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
D O I
10.1063/1.166472
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Elementary stably stratified flows with linear instability at all large Richardson numbers have been introduced recently by the authors [J. Fluid Mech. 376, 319-350 (1998)]. These elementary stratified flows have spatially constant but time varying gradients for velocity and density. Here the nonlinear stability of such flows in two space dimensions is studied through a combination of numerical simulations and theory. The elementary flows that are linearly unstable at large Richardson numbers are purely vortical flows; here it is established that from random initial data, linearized instability spontaneously generates local shears on buoyancy time scales near a specific angle of inclination that nonlinearly saturates into localized regions of strong mixing with density overturning resembling Kelvin-Helmholtz instability. It is also established here that the phase of these unstable waves does not satisfy the dispersion relation of linear gravity waves. The vortical flows are one family of stably stratified flows with uniform shear layers at the other extreme and elementary stably stratified flows with a mixture of vorticity and strain exhibiting behavior between these two extremes. The concept of effective shear is introduced for these general elementary flows; for each large Richardson number there is a critical effective shear with strong nonlinear instability, density overturning, and mixing for elementary flows with effective shear below this critical value. The analysis is facilitated by rewriting the equations for nonlinear perturbations in vorticity-stream form in a mean Lagrangian reference frame. (C) 2000 American Institute of Physics. [S1054-1500(00)00801-6].
引用
收藏
页码:3 / 27
页数:25
相关论文
共 25 条
[1]  
BRETHERTON CS, IN PRESS QJR METEORO
[2]  
CRAIK ADD, 1986, PROC R SOC LON SER-A, V406, P13, DOI 10.1098/rspa.1986.0061
[3]   EFFECTS OF DIFFUSION IN THE ASYMPTOTICS OF PERTURBATIONS IN STRATIFIED SHEAR-FLOW [J].
CRIMINALE, WO ;
CORDOVA, JQ .
PHYSICS OF FLUIDS, 1986, 29 (07) :2054-2060
[4]   INSTABILITY OF AN INTERNAL GRAVITY-WAVE [J].
DRAZIN, PG .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1977, 356 (1686) :411-432
[5]  
FARRELL BF, 1993, J ATMOS SCI, V50, P2201, DOI 10.1175/1520-0469(1993)050<2201:TDOPIS>2.0.CO
[6]  
2
[7]  
FERNANDO HJS, 1991, ANNU REV FLUID MECH, V23, P455, DOI 10.1146/annurev.fl.23.010191.002323
[8]   Some aspects of turbulence and mixing in stably stratified layers [J].
Fernando, HJS ;
Hunt, JCR .
DYNAMICS OF ATMOSPHERES AND OCEANS, 1996, 23 (1-4) :35-62
[9]  
Howard L.N, 1961, J FLUID MECH, V13, P158
[10]  
KLAASSEN GP, 1985, J ATMOS SCI, V42, P1321, DOI 10.1175/1520-0469(1985)042<1321:EOFAKB>2.0.CO