The DUNE framework: Basic concepts and recent developments

被引:75
作者
Bastian, Peter [1 ]
Blatt, Markus [2 ]
Dedner, Andreas [3 ]
Dreier, Nils-Arne [4 ]
Engwer, Christian [4 ]
Fritze, Rene [4 ]
Graeser, Carsten [5 ]
Grueninger, Christoph [6 ]
Kempf, Dominic [1 ]
Kloefkorn, Robert [7 ]
Ohlberger, Mario [4 ]
Sander, Oliver [8 ]
机构
[1] Heidelberg Univ, Heidelberg, Germany
[2] Dr Blatt HPC Simulat Software & Serv, Eichstatt, Germany
[3] Univ Warwick, Coventry, W Midlands, England
[4] Univ Munster, Appl Math Inst Anal & Numer, Munster, Germany
[5] Free Univ Berlin, Berlin, Germany
[6] Univ Stuttgart, Stuttgart, Germany
[7] NORCE Norwegian Res Ctr AS, Bergen, Norway
[8] Tech Univ Dresden, Dresden, Germany
关键词
FINITE-ELEMENT-METHOD; DISCONTINUOUS GALERKIN METHODS; GENERIC GRID INTERFACE; NUMERICAL-SIMULATION; MULTIGRID METHODS; ELLIPTIC PROBLEMS; MULTISCALE METHOD; ATMOSPHERIC FLOW; ERROR CONTROL; C++ LIBRARY;
D O I
10.1016/j.camwa.2020.06.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents the basic concepts and the module structure of the Distributed and Unified Numerics Environment and reflects on recent developments and general changes that happened since the release of the first DUNE version in 2007 and the main papers describing that state Bastian etal. (2008a, 2008b). This discussion is accompanied with a description of various advanced features, such as coupling of domains and cut cells, grid modifications such as adaptation and moving domains, high order discretizations and node level performance, non-smooth multigrid methods, and multiscale methods. A brief discussion on current and future development directions of the framework concludes the paper. (C) 2020 The Author(s). Published by Elsevier Ltd.
引用
收藏
页码:75 / 112
页数:38
相关论文
共 135 条
[1]   On a priori error analysis of fully discrete heterogeneous multiscale FEM [J].
Abdulle, A .
MULTISCALE MODELING & SIMULATION, 2005, 4 (02) :447-459
[2]   A posteriori error estimation in finite element analysis [J].
Ainsworth, M ;
Oden, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 142 (1-2) :1-88
[3]   Adaptive numerical analysis in primal elastoplasticity with hardening [J].
Alberty, J ;
Carstensen, C ;
Zarrabi, D .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 171 (3-4) :175-204
[4]  
Albrecht F, 2012, ALGORITMY 2012, P393
[5]   A WEAK COMPATIBILITY CONDITION FOR NEWEST VERTEX BISECTION IN ANY DIMENSION [J].
Alkaemper, Martin ;
Gaspoz, Fernando ;
Kloefkorn, Robert .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (06) :A3853-A3872
[6]   Distributed Newest Vertex Bisection [J].
Alkaemper, Martin ;
Klofkorn, Robert .
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2017, 104 :1-11
[7]  
Alkmper M., 2016, Archive of Numerical Software, V4, P1, DOI DOI 10.11588/ANS.2016.1.23252
[8]   Unified Form Language: A Domain-Specific Language for Weak Formulations of Partial Differential Equations [J].
Alnaes, Martin S. ;
Logg, Anders ;
Olgaard, Kristian B. ;
Rognes, Marie E. ;
Wells, Garth N. .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2014, 40 (02)
[9]  
[Anonymous], **DATA OBJECT**, DOI DOI 10.5281/ZEN0D0.34412
[10]  
[Anonymous], **DATA OBJECT**, DOI DOI 10.5281/ZEN0D0.16563