Nanowires Grown on InP (100): Growth Directions, Facets, Crystal Structures, and Relative Yield Control

被引:56
作者
Fonseka, H. Aruni [1 ]
Caroff, Philippe [1 ]
Wong-Leung, Jennifer [1 ,2 ]
Ameruddin, Amira S. [1 ,3 ]
Tan, Hark Hoe [1 ]
Jagadish, Chennupati [1 ]
机构
[1] Australian Natl Univ, Res Sch Phys & Engn, Dept Elect Mat Engn, Canberra, ACT 0200, Australia
[2] Australian Natl Univ, Ctr Adv Microscopy, Canberra, ACT 0200, Australia
[3] Univ Tun Hussein Onn Malaysia, Fac Sci Technol & Human Dev, Batu Pahat 86400, Johor, Malaysia
基金
澳大利亚研究理事会;
关键词
(100) substrates; InP nanowires; (100)-oriented nanowires; 3D twinning; planar nanowires; pregrowth anneal; GAAS NANOWIRES; DEFECT-FREE; INAS; MECHANISM; TRANSPORT; SHAPE;
D O I
10.1021/nn5017428
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Growth of III-V nanowires on the [100)-oriented industry standard substrates is critical for future integrated nanowire device development. Here we present an in-depth analysis of the seemingly complex ensembles of epitaxial nanowires grown on InP (100) substrates. The nanowires are categorized into three types as vertical, nonvertical, and planar, and the growth directions, facets, and crystal structure of each type are investigated. The nonvertical growth directions are mathematically modeled using a three-dimensional multiple-order twinning concept. The nonvertical nanowires can be further classified into two different types, with one type growing in the (111) directions and the other in the (100) directions after initial multiple three-dimensional twinning. We find that 99% of the total nanowires are grown either along (100), (111), or (110) growth directions by (100) or {111) growth facets. We also demonstrate relative control of yield of these different types of nanowires, by tuning pregrowth annealing conditions and growth parameters. Together, the knowledge and controllability of the types of nanowires provide an ideal foundation to explore novel geometries that combine different crystal structures, with potential for both fundamental science research and device applications.
引用
收藏
页码:6945 / 6954
页数:10
相关论文
共 42 条
[1]   Germanium nanowire epitaxy: Shape and orientation control [J].
Adhikari, H ;
Marshall, AF ;
Chidsey, CED ;
McIntyre, PC .
NANO LETTERS, 2006, 6 (02) :318-323
[2]   The Role of Surface Energies and Chemical Potential during Nanowire Growth [J].
Algra, Rienk E. ;
Verheijen, Marcel A. ;
Feiner, Lou-Fe ;
Immink, George G. W. ;
van Enckevort, Willem J. P. ;
Vlieg, Elias ;
Bakkers, Erik P. A. M. .
NANO LETTERS, 2011, 11 (03) :1259-1264
[3]   Self-catalyzed GaAs nanowire growth on Si-treated GaAs(100) substrates [J].
Ambrosini, S. ;
Fanetti, M. ;
Grillo, V. ;
Franciosi, A. ;
Rubini, S. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (09)
[4]   ANISOTROPIC LATERAL GROWTH IN GAAS MOCVD LAYERS ON (001) SUBSTRATES [J].
ASAI, H .
JOURNAL OF CRYSTAL GROWTH, 1987, 80 (02) :425-433
[5]   One-dimensional heterostructures in semiconductor nanowhiskers [J].
Björk, MT ;
Ohlsson, BJ ;
Sass, T ;
Persson, AI ;
Thelander, C ;
Magnusson, MH ;
Deppert, K ;
Wallenberg, LR ;
Samuelson, L .
APPLIED PHYSICS LETTERS, 2002, 80 (06) :1058-1060
[6]   Diffusion and incorporation:: shape evolution during overgrowth on structured substrates [J].
Braun, W ;
Kaganer, VM ;
Trampert, A ;
Schönherr, HP ;
Gong, Q ;
Nötzel, R ;
Däweritz, L ;
Ploog, KH .
JOURNAL OF CRYSTAL GROWTH, 2001, 227 :51-55
[7]  
Cai Y, 2006, ADV MATER, V18, P109, DOI 10.1002/adma.200500822
[8]   High vertical yield InP nanowire growth on Si(111) using a thin buffer layer [J].
Fonseka, H. A. ;
Tan, H. H. ;
Wong-Leung, J. ;
Kang, J. H. ;
Parkinson, P. ;
Jagadish, C. .
NANOTECHNOLOGY, 2013, 24 (46)
[9]   Metal-catalyzed semiconductor nanowires: a review on the control of growth directions [J].
Fortuna, Seth A. ;
Li, Xiuling .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2010, 25 (02)
[10]   Planar GaAs Nanowires on GaAs (100) Substrates: Self-Aligned, Nearly Twin-Defect Free, and Transfer-Printable [J].
Fortuna, Seth A. ;
Wen, Jianguo ;
Chun, Ik Su ;
Li, Xiuling .
NANO LETTERS, 2008, 8 (12) :4421-4427