Delivery Aspects of CRISPR/Cas for in Vivo Genome Editing

被引:214
作者
Wilbie, Danny [1 ]
Walther, Johanna [1 ]
Mastrobattista, Enrico [1 ]
机构
[1] Univ Utrecht, UIPS, Dept Pharmaceut, Univ Weg 99, NL-3584 CG Utrecht, Netherlands
关键词
INTRACELLULAR DELIVERY; CAS9; RIBONUCLEOPROTEIN; CHEMICAL-MODIFICATIONS; LIPID NANOPARTICLES; EFFICIENT DELIVERY; RNA; PROTEIN; DNA; CELLS; CRISPR-CAS9;
D O I
10.1021/acs.accounts.9b00106
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The discovery of CRISPR/Cas has revolutionized the field of genome editing. CRIPSR/Cas components are part of the bacterial immune system and are able to induce double-strand DNA breaks in the genome, which are resolved by endogenous DNA repair mechanisms. The most relevant of these are the error-prone nonhomologous end joining and homology directed repair pathways. The former can lead to gene knockout by introduction of insertions and deletions at the cut site, while the latter can be used for gene correction based on a provided repair template. In this Account, we focus on the delivery aspects of CRISPR/Cas for therapeutic applications in vivo. Safe and effective delivery of the CRISPR/Cas components into the nucleus of affected cells is essential for therapeutic gene editing. These components can be delivered in several formats, such as pDNA, viral vectors, or ribonuclear complexes. In the ideal case, the delivery system should address the current limitations of CRISPR gene editing, which are (1) lack of targeting specific tissues or cells, (2) the inability to enter cells, (3) activation of the immune system, and (4) off-target events. To circumvent most of these problems, initial therapeutic applications of CRISPR/Cas were performed on cells ex vivo via classical methods (e.g., microinjection or electroporation) and novel methods (e.g., TRIAMF and iTOP). Ideal candidates for such methods are, for example, hematopoietic cells, but not all tissue types are suited for ex vivo manipulation. For direct in vivo application, however, delivery systems are needed that can target the CRISPR/Cas components to specific tissues or cells in the human body, without causing immune activation or causing high frequencies of off-target effects. Viral systems have been used as a first resort to transduce cells in vivo. These systems suffer from problems related to packaging constraints, immunogenicity, and longevity of Cas expression, which favors off-target events. Viral vectors are as such not the best choice for direct in vivo delivery of CRISPR/Cas. Synthetic vectors can deliver nucleic acids as well, without the innate disadvantages of viral vectors. They can be classed into lipid, polymeric, and inorganic particles, all of which have been reported in the literature. The advantage of synthetic systems is that they can deliver the CRISPR/Cas system also as a preformed ribonucleoprotein complex. The transient nature of this approach favors low frequencies of off-target events and minimizes the window of immune activation. Moreover, from a pharmaceutical perspective, synthetic delivery systems are much easier to scale up for clinical use compared to viral vectors and can be chemically functionalized with ligands to obtain target cell specificity. The first preclinical results with lipid nanoparticles delivering CRISPR/Cas either as mRNA or ribonucleoproteins are very promising. The goal is translating these CRISPR/Cas therapeutics to a clinical setting as well. Taken together, these current trends seem to favor the use of sgRNA/Cas ribonucleoprotein complexes delivered in vivo by synthetic particles.
引用
收藏
页码:1555 / 1564
页数:10
相关论文
共 61 条
[1]   Targeted Delivery of RNAi Therapeutics With Endogenous and Exogenous Ligand-Based Mechanisms [J].
Akinc, Akin ;
Querbes, William ;
De, Soma ;
Qin, June ;
Frank-Kamenetsky, Maria ;
Jayaprakash, K. Narayanannair ;
Jayaraman, Muthusamy ;
Rajeev, Kallanthottathil G. ;
Cantley, William L. ;
Dorkin, J. Robert ;
Butler, James S. ;
Qin, LiuLiang ;
Racie, Timothy ;
Sprague, Andrew ;
Fava, Eugenio ;
Zeigerer, Anja ;
Hope, Michael J. ;
Zerial, Marino ;
Sah, Dinah W. Y. ;
Fitzgerald, Kevin ;
Tracy, Mark A. ;
Manoharan, Muthiah ;
Koteliansky, Victor ;
de Fougerolles, Antonin ;
Maier, Martin A. .
MOLECULAR THERAPY, 2010, 18 (07) :1357-1364
[2]   Endosomal Escape and Delivery of CRISPR/Cas9 Genome Editing Machinery Enabled by Nanoscale Zeolitic Imidazolate Framework [J].
Alsaiari, Shahad K. ;
Patil, Sachin ;
Alyami, Mram ;
Alamoudi, Kholod O. ;
Aleisa, Fajr A. ;
Merzaban, Jasmeen S. ;
Li, Mo ;
Khashab, Niveen M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (01) :143-146
[3]   CRISPR off-target analysis in genetically engineered rats and mice [J].
Anderson, Keith R. ;
Haeussler, Maximilian ;
Watanabe, Colin ;
Janakiraman, Vasantharajan ;
Lund, Jessica ;
Modrusan, Zora ;
Stinson, Jeremy ;
Bei, Qixin ;
Buechler, Andrew ;
Yu, Charles ;
Thamminana, Sobha R. ;
Tam, Lucinda ;
Sowick, Michael-Anne ;
Alcantar, Tuija ;
O'Neil, Natasha ;
Li, Jinjie ;
Ta, Linda ;
Lima, Lisa ;
Roose-Girma, Merone ;
Rairdan, Xin ;
Durinck, Steffen ;
Warming, Soren .
NATURE METHODS, 2018, 15 (07) :512-+
[4]   Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases [J].
Bae, Sangsu ;
Park, Jeongbin ;
Kim, Jin-Soo .
BIOINFORMATICS, 2014, 30 (10) :1473-1475
[5]   A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules [J].
Banaszynski, Laura A. ;
Chen, Lin-chun ;
Maynard-Smith, Lystranne A. ;
Ooi, A. G. Lisa ;
Wandless, Thomas J. .
CELL, 2006, 126 (05) :995-1004
[6]   Pharmacological Inhibition of Toll-Like Receptor-4 Signaling by TAK242 Prevents and Induces Regression of Experimental Organ Fibrosis [J].
Bhattacharyya, Swati ;
Wang, Wenxia ;
Tamaki, Zenshiro ;
Shi, Bo ;
Yeldandi, Anjana ;
Tsukimi, Yasuhiro ;
Yamasaki, Masashi ;
Varga, John .
FRONTIERS IN IMMUNOLOGY, 2018, 9
[7]   CRISPR-Cas9 gene editing: Delivery aspects and therapeutic potential [J].
Blenke, Erik Oude ;
Evers, Martijn J. W. ;
Mastrobattista, Enrico ;
van der Oost, John .
JOURNAL OF CONTROLLED RELEASE, 2016, 244 :139-148
[8]   Chemical modifications on siRNAs avoid Toll-like-receptor-mediated activation of the hepatic immune system in vivo and in vitro [J].
Broering, Ruth ;
Real, Catherine I. ;
John, Matthias J. ;
Jahn-Hofmann, Kerstin ;
Ickenstein, Ludger M. ;
Kleinehr, Kathrin ;
Paul, Andreas ;
Gibbert, Kathrin ;
Dittmer, Ulf ;
Gerken, Guido ;
Schlaak, Joerg F. .
INTERNATIONAL IMMUNOLOGY, 2014, 26 (01) :35-46
[9]   Integrating Combinatorial Lipid Nanoparticle and Chemically Modified Protein for Intracellular Delivery and Genome Editing [J].
Chang, Jin ;
Chen, Xianghan ;
Glass, Zachary ;
Gao, Feng ;
Mao, Lanqun ;
Wang, Ming ;
Xu, Qiaobing .
ACCOUNTS OF CHEMICAL RESEARCH, 2019, 52 (03) :665-675
[10]   Identification of preexisting adaptive immunity to Cas9 proteins in humans [J].
Charlesworth, Carsten T. ;
Deshpande, Priyanka S. ;
Dever, Daniel P. ;
Camarena, Joab ;
Lemgart, Viktor T. ;
Cromer, M. Kyle ;
Vakulskas, Christopher A. ;
Collingwood, Michael A. ;
Zhang, Liyang ;
Bode, Nicole M. ;
Behlke, Mark A. ;
Dejene, Beruh ;
Cieniewicz, Brandon ;
Romano, Rosa ;
Lesch, Benjamin J. ;
Gomez-Ospina, Natalia ;
Mantri, Sruthi ;
Pavel-Dinu, Mara ;
Weinberg, Kenneth I. ;
Porteus, Matthew H. .
NATURE MEDICINE, 2019, 25 (02) :249-+