Numerical solution of a class of fractional order integro-differential algebraic equations using Muntz-Jacobi Tau method

被引:6
作者
Ghanbari, F. [1 ]
Mokhtary, P. [1 ]
Ghanbari, K. [1 ]
机构
[1] Sahand Univ Technol, Fac Basic Sci, Dept Math, Tabriz, Iran
关键词
Fractional order Volterra integro-differential algebraic equation; Muntz-Jacobi Tau method; Numerical solvability; Convergence analysis; CONVERGENCE ANALYSIS; COLLOCATION METHODS; SPLINE COLLOCATION; SYSTEMS;
D O I
10.1016/j.cam.2019.05.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a spectral Tau method based on Muntz-Jacobi basis functions for approximating the solutions of fractional order Volterra integro-differential algebraic equations. We examine the solvability of the considered equation, and we show that the exact solutions suffer from a singularity at the origin. Numerical solvability and convergence analysis of the proposed approximate approach are also studied, and the error bounds are obtained in a weighted L-2-norm. Some illustrative examples are presented to validate the theoretical results. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:172 / 184
页数:13
相关论文
共 45 条
  • [1] [Anonymous], 2011, Spectral Methods, DOI [DOI 10.1007/978, DOI 10.1007/978-3-540-71041-7, 10.1007/978-3-540-71041-7]
  • [2] [Anonymous], 1997, PREPRINT
  • [3] [Anonymous], MATH METHODS APPL SC
  • [4] MUNTZ SYSTEMS AND ORTHOGONAL MUNTZ-LEGENDRE POLYNOMIALS
    BORWEIN, P
    ERDELYI, T
    ZHANG, J
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 342 (02) : 523 - 542
  • [5] Brunner H., 2004, Cambridge Monographs on Applied and Computational Mathematics, V15
  • [6] Numerical solution of integral-algebraic equations for multistep methods
    Budnikova, O. S.
    Bulatov, M. V.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2012, 52 (05) : 691 - 701
  • [7] Two-dimensional integral-algebraic systems: Analysis and computational methods
    Bulatov, M. V.
    Lima, P. M.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (02) : 132 - 140
  • [8] Canuto C, 2006, SCIENTIF COMPUT, DOI 10.1007/978-3-540-30726-6
  • [9] GENERALIZED JACOBI FUNCTIONS AND THEIR APPLICATIONS TO FRACTIONAL DIFFERENTIAL EQUATIONS
    Chen, Sheng
    Shen, Jie
    Wang, Li-Lian
    [J]. MATHEMATICS OF COMPUTATION, 2016, 85 (300) : 1603 - 1638
  • [10] Chistyakov V. F., 1986, LYAPUNOV FUNCTIONS T, P231