Maximum likelihood estimation in vector autoregressive models with multivariate scaled t-distributed innovations using EM-based algorithms

被引:4
作者
Mirniam, A. S. [1 ]
Nematollahi, A. R. [1 ]
机构
[1] Shiraz Univ, Dept Stat, Shiraz, Iran
关键词
ECM algorithm; ECME algorithm; EM algorithm; Multivariate scaled t-distribution; Vector autoregressive process; REGRESSION;
D O I
10.1080/03610918.2017.1295155
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article is concerned with the likelihood-based inference of vector autoregressive models with multivariate scaled t-distributed innovations by applying the EM-based (ECM and ECME) algorithms. The ECM and ECME algorithms, which are analytically quite simple to use, are applied to find the maximum likelihood estimates of the model parameters and then compared based on the computational running time and the accuracy of estimation via a simulation study. The results demonstrate that the ECME is efficient and usable in practice. We also show how the method can be applied to a multivariate dataset.
引用
收藏
页码:890 / 904
页数:15
相关论文
共 27 条
  • [1] Akaike H, 1973, Selected Papers of Hirotugu Akaike, P199, DOI DOI 10.1007/978-1-4612-1694-0_15
  • [2] ANDREWS DF, 1974, J ROY STAT SOC B MET, V36, P99
  • [3] [Anonymous], 2004, Multivariate T Distributions and Their Applications
  • [4] Bishop Christopher M, 2016, Pattern recognition and machine learning
  • [5] Brockwell P.J., 1991, TIME SERIES THEORY M
  • [6] Brockwell PJ, 2016, SPRINGER TEXTS STAT, P1, DOI 10.1007/978-3-319-29854-2
  • [7] DeGroot MH., 2005, OPTIMAL STAT DECISIO, V82
  • [8] MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM
    DEMPSTER, AP
    LAIRD, NM
    RUBIN, DB
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01): : 1 - 38
  • [9] ROBUST ESTIMATION OF THE 1ST-ORDER AUTOREGRESSIVE PARAMETER
    DENBY, L
    MARTIN, RD
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1979, 74 (365) : 140 - 146
  • [10] FOX AJ, 1972, J ROY STAT SOC B, V34, P350