An upper and lower solution approach for a generalized Thomas-Fermi theory of neutral atoms

被引:5
作者
Agarwal, RP [1 ]
O'Regan, D
机构
[1] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
[2] Natl Univ Ireland, Dept Math, Galway, Ireland
关键词
boundary value problem; upper and lower solution; Thomas-Fermi theory; existence;
D O I
10.1080/10241230212908
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents an upper and lower solution theory for boundary value problems modelled from the Thomas-Fermi equation subject to a boundary condition corresponding to the neutral atom with Bohr radius.
引用
收藏
页码:135 / 142
页数:8
相关论文
共 7 条
[1]  
Agarwal R.P., 1999, POSITIVE SOLUTIONS D
[2]   COMPUTATIONAL METHODS FOR GENERALIZED THOMAS-FERMI MODELS OF NEUTRAL ATOMS [J].
CHAN, CY ;
HON, YC .
QUARTERLY OF APPLIED MATHEMATICS, 1988, 46 (04) :711-726
[3]  
Conway J. B., 2012, Functions of One Complex Variable, V1
[4]  
GRANAS A, 1981, Z ANGEW MATH MECH, V61, P204
[5]   MONOTONE METHODS FOR THOMAS-FERMI EQUATION [J].
MOONEY, JW .
QUARTERLY OF APPLIED MATHEMATICS, 1978, 36 (03) :305-314
[6]  
O'Regan D, 1994, THEORY SINGULAR BOUN
[7]   EXISTENCE THEOREMS FOR CERTAIN CLASSES OF SINGULAR BOUNDARY-VALUE-PROBLEMS [J].
OREGAN, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 168 (02) :523-539