Toward high specific capacity and high cycling stability of pure tin nanoparticles with conductive polymer binder for sodium ion batteries

被引:89
作者
Dai, Kehua [1 ,2 ]
Zhao, Hui [2 ]
Wang, Zhihui [2 ]
Song, Xiangyun [2 ]
Battaglia, Vince [2 ]
Liu, Gao [2 ]
机构
[1] Northeastern Univ, Sch Met & Mat, Shenyang 110004, Peoples R China
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA
基金
中国国家自然科学基金;
关键词
Sodium ion batteries; Tin; Binder; Anode material; ALLOY NEGATIVE ELECTRODES; ANODE MATERIAL; CATHODE MATERIAL; ELECTROCHEMICAL PERFORMANCE; POTENTIAL ANODE; LITHIUM; STORAGE; COMPOSITE; TIO2; NANOCOMPOSITES;
D O I
10.1016/j.jpowsour.2014.04.012
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Pure Sn nanoparticles electrode with Poly(9,9-dioctylfluorene-co-fluorenone-co-methylbenzoic ester) (PFM) conductive binder was prepared and tested in sodium ion battery. It showed higher specific capacity and higher cycling stability without any carbon black compared with Sn/CMC (carboxy methylated cellulose) and Sn/PVDF (polyvinylidene fluoride) electrode. The Sn in Sn/PFM electrodes delivered 806 mAh g(-1) at C/50 and 610 mAh g(-1) at C/10. After 10 cycles at C/10, the capacity of Sn had no decay. SEM and TEM images showed that the Sn particles in Sn/PFM electrode were still in good conductive network despite big volume change, but parts of Sn particles in Sn/CMC or Sn/PVDF electrode are electrically isolated. Published by Elsevier B.V.
引用
收藏
页码:276 / 279
页数:4
相关论文
共 50 条
[1]   Carbon black:: a promising electrode material for sodium-ion batteries [J].
Alcántara, R ;
Jiménez-Mateos, JM ;
Lavela, P ;
Tirado, JL .
ELECTROCHEMISTRY COMMUNICATIONS, 2001, 3 (11) :639-642
[2]   Germanium as negative electrode material for sodium-ion batteries [J].
Baggetto, Loic ;
Keum, Jong K. ;
Browning, James F. ;
Veith, Gabriel M. .
ELECTROCHEMISTRY COMMUNICATIONS, 2013, 34 :41-44
[3]   Mo3Sb7 as a very fast anode material for lithium-ion and sodium-ion batteries [J].
Baggetto, Loic ;
Allcorn, Eric ;
Unocic, Raymond R. ;
Manthiram, Arumugam ;
Veith, Gabriel M. .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (37) :11163-11169
[4]   Characterization of sodium ion electrochemical reaction with tin anodes: Experiment and theory [J].
Baggetto, Loic ;
Ganesh, P. ;
Meisner, Roberta P. ;
Unocic, Raymond R. ;
Jumas, Jean-Claude ;
Bridges, Craig A. ;
Veith, Gabriel M. .
JOURNAL OF POWER SOURCES, 2013, 234 :48-59
[5]   Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries [J].
Barpanda, Prabeer ;
Ye, Tian ;
Nishimura, Shin-ichi ;
Chung, Sai-Cheong ;
Yamada, Yuki ;
Okubo, Masashi ;
Zhou, Haoshen ;
Yamada, Atsuo .
ELECTROCHEMISTRY COMMUNICATIONS, 2012, 24 :116-119
[6]   Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries [J].
Bi, Zhonghe ;
Paranthaman, M. Parans ;
Menchhofer, Paul A. ;
Dehoff, Ryan R. ;
Bridges, Craig A. ;
Chi, Miaofang ;
Guo, Bingkun ;
Sun, Xiao-Guang ;
Dai, Sheng .
JOURNAL OF POWER SOURCES, 2013, 222 :461-466
[7]   Combustion-synthesized sodium manganese (cobalt) oxides as cathodes for sodium ion batteries [J].
Bucher, Nicolas ;
Hartung, Steffen ;
Gocheva, Irina ;
Cheah, Yan L. ;
Srinivasan, Madhavi ;
Hoster, Harry E. .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2013, 17 (07) :1923-1929
[8]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[9]   Challenges for Na-ion Negative Electrodes [J].
Chevrier, V. L. ;
Ceder, G. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (09) :A1011-A1014
[10]   Cathode properties of Na3M2(PO4)2F3 [M = Ti, Fe, V] for sodium-ion batteries [J].
Chihara, Kuniko ;
Kitajou, Ayuko ;
Gocheva, Irina D. ;
Okada, Shigeto ;
Yamaki, Jun-ichi .
JOURNAL OF POWER SOURCES, 2013, 227 :80-85