Sensitivity Analysis for Causal Inference under Unmeasured Confounding and Measurement Error Problems

被引:31
作者
Diaz, Ivan [1 ]
van der Laan, Mark J. [2 ]
机构
[1] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Biostat, Baltimore, MD USA
[2] Univ Calif Berkeley, Berkeley, CA 94720 USA
关键词
sensitivity analysis; causal inference; coarsening at random;
D O I
10.1515/ijb-2013-0004
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, we present a sensitivity analysis for drawing inferences about parameters that are not estimable from observed data without additional assumptions. We present the methodology using two different examples: a causal parameter that is not identifiable due to violations of the randomization assumption, and a parameter that is not estimable in the nonparametric model due to measurement error. Existing methods for tackling these problems assume a parametric model for the type of violation to the identifiability assumption and require the development of new estimators and inference for every new model. The method we present can be used in conjunction with any existing asymptotically linear estimator of an observed data parameter that approximates the unidentifiable full data parameter and does not require the study of additional models.
引用
收藏
页码:149 / 160
页数:12
相关论文
共 23 条
[1]  
[Anonymous], 2000, Statistical models in epidemiology, the environment, and clinical trials
[2]  
Bembom O, 2007, STAT APPL GENET MOL, V6
[3]   A practical illustration of the importance of realistic individualized treatment rules in causal inference [J].
Bembom, Oliver ;
van der Laan, Mark J. .
ELECTRONIC JOURNAL OF STATISTICS, 2007, 1 :574-596
[4]  
Gustafson Paul., 1996, Bayesian statistics, V5, P197
[5]   IGNORABILITY AND COARSE DATA [J].
HEITJAN, DF ;
RUBIN, DB .
ANNALS OF STATISTICS, 1991, 19 (04) :2244-2253
[6]   Invited Commentary: Causal Diagrams and Measurement Bias [J].
Hernan, Miguel A. ;
Cole, Stephen R. .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2009, 170 (08) :959-962
[7]   MODELING THE DROP-OUT MECHANISM IN REPEATED-MEASURES STUDIES [J].
LITTLE, RJA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (431) :1112-1121
[8]   Pattern-mixture models for multivariate incomplete data with covariates [J].
Little, RJA ;
Wang, YX .
BIOMETRICS, 1996, 52 (01) :98-111
[10]   Bayesian sensitivity analysis for unmeasured confounding in observational studies [J].
McCandless, Lawrence C. ;
Gustafson, Paul ;
Levy, Adrian .
STATISTICS IN MEDICINE, 2007, 26 (11) :2331-2347