Two Dimensional Molecular Electronics Spectroscopy for Molecular Fingerprinting, DNA Sequencing, and Cancerous DNA Recognition

被引:71
作者
Rajan, Arunkumar Chitteth [1 ]
Rezapour, Mohammad Reza [2 ]
Yun, Jeonghun [1 ]
Cho, Yeonchoo [1 ]
Cho, Woo Jong [1 ]
Min, Seung Kyu [1 ]
Lee, Geunsik [1 ]
Kim, Kwang S. [1 ,2 ,3 ]
机构
[1] Pohang Univ Sci & Technol, Dept Chem, Pohang 790784, South Korea
[2] Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, South Korea
[3] UNIST, Dept Chem, Ulsan 689798, South Korea
关键词
electron transport; Fano resonance; molecular electronics spectroscopy; DNA sequencing; methylated DNA; GRAPHENE NANORIBBON; TRANSPORT; BASES; NUCLEOTIDES; CONDUCTANCE; NANOPORES; ORIGIN;
D O I
10.1021/nn4062148
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Laser-driven molecular spectroscopy of low spatial resolution is widely used, while electronic current-driven molecular spectroscopy of atomic scale resolution has been limited because currents provide only minimal information. However, electron transmission of a graphene nanoribbon on which a molecule is adsorbed shows molecular fingerprints of Fano resonances, i.e., characteristic features of frontier orbitals and conformations of physisorbed molecules. Utilizing these resonance profiles, here we demonstrate two-dimensional molecular electronics spectroscopy (20 MES). The differential conductance with respect to bias and gate voltages not only distinguishes different types of nucleobases for DNA sequencing but also recognizes methylated nucleobases which could be related to cancerous cell growth. This 2D MES could open an exciting field to recognize single molecule signatures at atomic resolution. The advantages of the 2D MES over the one-dimensional (10) current analysis can be comparable to those of 2D NMR over 10 NMR analysis.
引用
收藏
页码:1827 / 1833
页数:7
相关论文
共 50 条
  • [1] Electronic Fingerprints of DNA Bases on Graphene
    Ahmed, Towfiq
    Kilina, Svetlana
    Das, Tanmoy
    Haraldsen, Jason T.
    Rehr, John J.
    Balatsky, Alexander V.
    [J]. NANO LETTERS, 2012, 12 (02) : 927 - 931
  • [2] [Anonymous], 2005, Introducing Molecular Electronics
  • [3] Density-functional method for nonequilibrium electron transport -: art. no. 165401
    Brandbyge, M
    Mozos, JL
    Ordejón, P
    Taylor, J
    Stokbro, K
    [J]. PHYSICAL REVIEW B, 2002, 65 (16) : 1654011 - 16540117
  • [4] Atomically precise bottom-up fabrication of graphene nanoribbons
    Cai, Jinming
    Ruffieux, Pascal
    Jaafar, Rached
    Bieri, Marco
    Braun, Thomas
    Blankenburg, Stephan
    Muoth, Matthias
    Seitsonen, Ari P.
    Saleh, Moussa
    Feng, Xinliang
    Muellen, Klaus
    Fasel, Roman
    [J]. NATURE, 2010, 466 (7305) : 470 - 473
  • [5] Tuning the Band Gap of Graphene Nanoribbons Synthesized from Molecular Precursors
    Chen, Yen-Chia
    de Oteyza, Dimas G.
    Pedramrazi, Zahra
    Chen, Chen
    Fischer, Felix R.
    Crommie, Michael F.
    [J]. ACS NANO, 2013, 7 (07) : 6123 - 6128
  • [6] Chromium Porphyrin Arrays As Spintronic Devices
    Cho, Woo Jong
    Cho, Yeonchoo
    Min, Seung Kyu
    Kim, Woo Youn
    Kim, Kwang S.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (24) : 9364 - 9369
  • [7] Noncovalent Interactions of DNA Bases with Naphthalene and Graphene
    Cho, Yeonchoo
    Min, Seung Kyu
    Yun, Jeonghun
    Kim, Woo Youn
    Tkatchenko, Alexandre
    Kim, Kwang S.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (04) : 2090 - 2096
  • [8] The origin of dips for the graphene-based DNA sequencing device
    Cho, Yeonchoo
    Min, Seung Kyu
    Kim, Woo Youn
    Kim, Kwang S.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (32) : 14293 - 14296
  • [9] DNA methylation: Bisulphite modification and analysis
    Clark, Susan J.
    Statham, Aaron
    Stirzaker, Clare
    Molloy, Peter L.
    Frommer, Marianne
    [J]. NATURE PROTOCOLS, 2006, 1 (05) : 2353 - 2364
  • [10] Datta S., 1997, ELECT TRANSPORT MESO